Image Classification
How to log your model schema for image classification models
Image Classification Model Overview
Image classification models take an image as input and return a predicted label for the image.
*all classification variant specifications apply to the Image Classification model type, with the addition of embeddings
Performance Metrics
Accuracy, Recall, Precision, FPR, FNR, F1, Sensitivity, Specificity
Code Example
The EmbeddingColumnNames
class constructs your embedding objects. You can log them into the platform using a dictionary that maps the embedding feature names to the embedding objects. See our API reference for more details.
Navigate here for step-by-step instructions to view private AWS S3 image links.
Example Row
image_vector | image_link | prediction_label | actual_label | prediction_score | actual_score | Timestamp |
---|---|---|---|---|---|---|
|
|
|
|
Image Classification Embedding Features
Arize supports logging the embedding features associated with the image the model is acting on and the image itself using the EmbeddingColumnNames
object.
The
vector_column_name
should be the name of the column where the embedding vectors are stored. The embedding vector is the dense vector representation of the unstructured input. ⚠️ Note: embedding features are not sparse vectors.The
link_to_data_column_name
should be the name of the column where the URL links to the source images, that your model classifies, are stored.
See here for more information on embeddings and options for generating them.
Last updated