Call arize.log to publish the features, predicted label, actual observed label, and SHAP for a single data point to Arize for monitoring, analysis, and explainability.
Use the initialized Arize client to call arize.log() with a predicted label, predicted actual, their feature inputs, their shap values, and a corresponding prediction id. Once records are sent to Arize's platform, you'll be able to visualize and analyze data holistically or within aggregated slices.
arize.log() returns a Response. You can await on the Response to complete to ensure successful delivery of records.
When logging a prediction for the first time for a new model, we classify the model in the Arize platform based on the data type of the prediction.
For more information on model schema discovery, visit here:
<T> Response log(
final String modelId,
final String modelVersion,
final String predictionId,
final Map<String, ?> features,
final Map<String, ?> tags,
final Map<String, Embedding> embeddingFeatures,
final T predictionLabel,
final T actualLabel,
final Map<String, Double> shapValues,
long predictionTimestamp) throws IllegalArgumentExceptionArgument, IOException
API Arguments
Argument
Type(s)
Description
Required
modelId
String
Costumer provided unique identifier for a given model.
Y
modelVersion
String
Used to group together a subset of predictions and actuals for a given model_id. If null is passes, a prediction will only be associated with a model id with no version.
Y
predictionId
String
Unique string identifier for specific label. Must match a previously sent Prediction record.
Y
features
Map<String, ?>
Where value can be oneOf: String, int, long, short, double, float, boolean, List<String>
Map containing human readable and debuggable model features. Map keys must be String and values one of: String, int, long, short, double, float, boolean, List<String>
Optional
embeddingFeatures
Map<String, Embedding>
Map containing human readable and debuggable model embedding features. Map keys must be String and values Embedding
tags
Map<String, ?> Where value can be oneOf: String, int, long, short, double, float, boolean, List<String>
Map containing human readable and debuggable model features. Map keys must be String and values one of: String, int, long, short, double, float, boolean, List<String>
Optional
predictionLabel
String, boolean, int, long, short, float, double
The predicted label for a given model input (associated via predictionId).
Optional
actualLabel
String, boolean, int, long, short, float, double
The actual label for a given model input (associated via predictionId)
Optional
shapValues
Map<String, Double>
Map keys must be String and match the names of the features used in the prediction; values must be Double.
Optional
predictionTimestamp
long
If long representing Unix epoch time in seconds, set overwrite the timestamp for prediction.
If null, default to current timestamp.
Important: Future and Historical predictions are supported up to 1 year from current wall clock time.
Optional
Sample Code (Categorical)
importcom.arize.ArizeClient;importcom.arize.Response;importcom.arize.types.Embedding;Map<String,String> features =newHashMap<>();features.put("key","value");Map<String,Embedding> embeddingFeatures =newHashMap<>();embeddingFeatures.put("embedding_feature_key",newEmbedding(Arrays.asList(1.0,0.5),Arrays.asList("test","token","array"),"https://example.com/image.jpg"));Map<String,String> tags =newHashMap<>();tags.put("tag_key","tag_value");ArizeClient arize =newArizeClient(System.getenv("ARIZE_API_KEY"),System.getenv("ARIZE_SPACE_KEY"));Response asyncResponse = arize.log("exampleModelId", "v1", UUID.randomUUID().toString(), features, embeddingFeatures, tags, "pear", null, null, 0);
// This is a blocking call similar to future.get()asyncResponse.resolve();// Check that the API call was successfulswitch (asyncResponse.getResponseCode()) {case OK:// TODO: Success!System.out.println("Success!!!");break;case AUTHENTICATION_ERROR:// TODO: Check to make sure your Arize API KEY and Space key are correctbreak;case BAD_REQUEST:// TODO: Malformed requestSystem.out.println("Failure Reason: "+asyncResponse.getResponseBody());case NOT_FOUND:// TODO: API endpoint not found, client is likely malconfigured, make sure you// are not overwriting Arize's endpoint URIbreak;case UNEXPECTED_FAILURE:// TODO: Unexpected failure, check for a reason on response bodySystem.out.println("Failure Reason: "+asyncResponse.getResponseBody());break;}// Don't forget to shutdown the client with your application shutdown hook.arize.close();
Sample Code - Score Categorical
importcom.arize.ArizeClient;importcom.arize.Response;importcom.arize.types.Embedding;Map<String,String> features =newHashMap<>();features.put("key","value");Map<String,Embedding> embeddingFeatures =newHashMap<>();embeddingFeatures.put("embedding_feature_key",newEmbedding(Arrays.asList(1.0,0.5),Arrays.asList("test","token","array"),"https://example.com/image.jpg"));Map<String,String> tags =newHashMap<>();tags.put("tag_key","tag_value");ArizeClient arize =newArizeClient(System.getenv("ARIZE_API_KEY"),System.getenv("ARIZE_SPACE_KEY"));// Score Categorical LabelArizeClient.ScoredCategorical scoreLabel =new ArizeClient.ScoredCategorical("Categorical Label",20.21);Response asyncResponse = client.log("modelId", "modelVersion", "predictionId", features, embeddingFeatures, tags, scoreLabel, null, null, 0);
// This is a blocking call similar to future.get()asyncResponse.resolve();// Check that the API call was successfulswitch (asyncResponse.getResponseCode()) {case OK:// TODO: Success!System.out.println("Success!!!");break;case AUTHENTICATION_ERROR:// TODO: Check to make sure your Arize API KEY and Space key are correctbreak;case BAD_REQUEST:// TODO: Malformed requestSystem.out.println("Failure Reason: "+asyncResponse.getResponseBody());case NOT_FOUND:// TODO: API endpoint not found, client is likely malconfigured, make sure you// are not overwriting Arize's endpoint URIbreak;case UNEXPECTED_FAILURE:// TODO: Unexpected failure, check for a reason on response bodySystem.out.println("Failure Reason: "+asyncResponse.getResponseBody());break;}// Don't forget to shutdown the client with your application shutdown hook.arize.close();
Sample Code - Sending in Numeric Sequences for Ranking Models
The following code snippet highlights the use of the ScoredCategorical constructor for including a numeric sequence in the actualScoreLabel
import com.arize.ArizeClient.ScoredCategorical;
Map<String, String> features = new HashMap<>();
features.put("key", "value");
// Score Categorical Label
ScoredCategorical predictionScoreLabel = new ScoredCategorical("Categorical Label", 20.21);
ScoredCategorical actualScoreLabel = new ScoredCategorical("relevant", 4.13, Arrays.asList(0.12, 0.23, 0.34))
Response response = client.log("modelId", "modelVersion", "predictionId", features, predictionScoreLabel, actualScoreLabel, null, 0);
// This is a blocking call similar to future.get()
asyncResponse.resolve();