You might want to track additional application details manually. This is particularly useful for actions outside standard frameworks or LLM clients.
Add attributes to a span
Attributes let you attach key/value pairs to a spans so it carries more information about the current operation that it's tracking.
Notice that the attributes have a specific prefix operation. When adding custom attributes, it's best practice to vendor your attributes (e.x. mycompany.) so that your attributes do not clash with semantic conventions.
You can add attributes to spans in Javascript in multiple ways:
tracer.startActiveSpan('app.new-span', { attributes: { attribute1:'value1' } }, (span) => {// do some work...span.end(); },);
functionchat(message:string, user:User) {returntracer.startActiveSpan(`chat:${i}`, (span:Span) => {constresult=Math.floor(Math.random() * (max - min) + min);// Add an attribute to the spanspan.setAttribute('mycompany.userid',user.id);span.end();return result; });}
// You can set any custom attribute you wantsingleAttrSpan.setAttribute("custom_attr","custom attribute here");// close the spansingleAttrSpan.end();
Add attributes tied to semantic conventions
Semantic Conventions provides a structured schema to represent common LLM application attributes. These are well known names for items like messages, prompt templates, metadata, and more. We've built a set of semantic conventions as part of the OpenInference package.
Setting attributes is crucial for understanding the flow of data and messages through your LLM application, which facilitates easier debugging and analysis. By setting attributes such as OUTPUT_VALUE and OUTPUT_MESSAGES, you can capture essential output details and interaction messages within the context of a span. This allows you to record the response and categorize and store messages exchanged by components in a structured format, which is used in Arize to help you debug your application.
To use OpenInference Semantic Attributes in Python, ensure you have the semantic conventions package:
pipinstallopeninference-semantic-conventions
Then run the following to set semantic attributes:
from openinference.semconv.trace import SpanAttributesspan.set_attribute(SpanAttributes.OUTPUT_VALUE, response)# This shows up under `output_messages` tab on the span page within Arizespan.set_attribute( f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}","assistant",)span.set_attribute( f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}", response,)
First, add both semantic conventions as a dependency to your application:
Finally, you can update your file to include semantic attributes:
constdoWork= () => {tracer.startActiveSpan('app.doWork', (span) => {span.setAttribute(SemanticAttributes.INPUT_VALUE,'work input');// Do some work...span.end(); });};
For instance, in the chat example from the previous section, we may want to create a span to capture some information about our request before we call out to OpenAI which is auto instrumented using the OpenInference OpenAI package.
/*app.ts*/import { trace } from'@opentelemetry/api';import express, { Express } from'express';import { OpenAI } from"openai";import { MimeType, OpenInferenceSpanKind, SemanticConventions,} from"@arizeai/openinference-semantic-conventions";consttracer=trace.getTracer('llm-server','0.1.0');constPORT:number=parseInt(process.env.PORT||'8080');constapp:Express=express();constopenai=newOpenAI({ apiKey:process.env.OPENAI_API_KEY,});app.get('/chat', (req, res) => {constmessage=req.query.message// Start a chain span, this will be the parent of all the work done in this route// including the spans created by the OpenAI auto instrumentation packagetracer.startActiveSpan("chat chain",async (span) => {span.setAttributes({ [SemanticConventions.OPENINFERENCE_SPAN_KIND]:OpenInferenceSpanKind.CHAIN, [SemanticConventions.INPUT_VALUE]: message, [SemanticConventions.INPUT_MIME_TYPE]:MimeType.TEXT,// Metadata can be used to store user defined values [SemanticConventions.METADATA]:JSON.stringify({"userId":req.query.userId,"conversationId":req.query.conversationId }) });// Will be picked up by auto instrumentationconstchatCompletion=awaitopenai.chat.completions.create({ messages: [{ role:"user", content: message }], model:"gpt-3.5-turbo", });constresponse=chatCompletion.choices[0].message;span.setAttributes({ [SemanticConventions.OUTPUT_VALUE]: response, [SemanticConventions.OUTPUT_MIME_TYPE]:MimeType.TEXT, [`${SemanticConventions.LLM_OUTPUT_MESSAGES}.0.${SemanticConventions.MESSAGE_CONTENT}`]: streamedResponse, [`${SemanticConventions.LLM_OUTPUT_MESSAGES}.0.${SemanticConventions.MESSAGE_ROLE}`]: role, });span.setStatus({ code:SpanStatusCode.OK });// End the spanspan.end();res.send(response); })});app.listen(PORT, () => {console.log(`Listening for requests on http://localhost:${PORT}`);});
This example demonstrates how to use a CHAIN span to wrap our LLM span, allowing additional application data to be tracked. This data can then be analyzed in Arize. For more complex applications, different strategies might be required. Refer to the previous section for detailed guidance on creating and nesting spans effectively.
// Use OpenInference semantic conventions to set reserved attributes singleAttrSpan.setAttribute("openinference.span.kind","CHAIN");singleAttrSpan.setAttribute("input.value", input);singleAttrSpan.setAttribute("output.value", output);
Add attributes to multiple spans at once
You can set attributes once to OpenTelemetry Context, and our tracing integrations will attempt to pass these attributes to all other spans underneath a parent trace.
Supported Context Attributes include:
Metadata: Metadata associated with a span.
Tags: List of tags to give the span a category.
Session ID: Unique identifier for a session.
User ID: identifier for a user.
Prompt Template:
Template: Used to generate prompts as Python f-strings.
Version: The version of the prompt template.
Variables: key-value pairs applied to the prompt template.
Here are the functions we support to add attributes to context.
Install the package via pip install openinference-instrumentation
using_metadata
Context manager to add metadata to the current OpenTelemetry Context. OpenInference auto instrumentators will read this Context and pass the metadata as a span attribute, following the OpenInference semantic conventions. Its input, the metadata, must be a dictionary with string keys. This dictionary will be serialized to JSON when saved to the OTEL Context and remain a JSON string when sent as a span attribute.
from openinference.instrumentation import using_metadatametadata ={"key-1": value_1,"key-2": value_2, ...}withusing_metadata(metadata):# Calls within this block will generate spans with the attributes:# "metadata" = "{\"key-1\": value_1, \"key-2\": value_2, ... }" # JSON serialized ...
It can also be used as a decorator:
@using_metadata(metadata)defcall_fn(*args,**kwargs):# Calls within this function will generate spans with the attributes:# "metadata" = "{\"key-1\": value_1, \"key-2\": value_2, ... }" # JSON serialized ...
using_tags
Context manager to add tags to the current OpenTelemetry Context. OpenInference auto instrumentators will read this Context and pass the tags as a span attribute, following the OpenInference semantic conventions. ts input, the tag list, must be a list of strings.
from openinference.instrumentation import using_tagstags = ["tag_1","tag_2", ...]withusing_tags(tags):# Calls within this block will generate spans with the attributes:# "tag.tags" = "["tag_1","tag_2",...]" ...
It can also be used as a decorator:
@using_tags(tags)defcall_fn(*args,**kwargs):# Calls within this function will generate spans with the attributes:# "tag.tags" = "["tag_1","tag_2",...]" ...
using_prompt_template
Context manager to add a prompt template (including its version and variables) to the current OpenTelemetry Context. OpenInference auto instrumentators will read this Context and pass the prompt template fields as span attributes, following the OpenInference semantic conventions. Its inputs must be of the following type:
Template: non-empty string.
Version: non-empty string.
Variables: a dictionary with string keys. This dictionary will be serialized to JSON when saved to the OTEL Context and remain a JSON string when sent as a span attribute.
from openinference.instrumentation import using_prompt_templateprompt_template ="Please describe the weather forecast for {city} on {date}"prompt_template_variables ={"city":"Johannesburg","date":"July 11"}withusing_prompt_template( template=prompt_template, version=prompt_template_variables, variables="v1.0", ):# Calls within this block will generate spans with the attributes:# "llm.prompt_template.template" = "Please describe the weather forecast for {city} on {date}"# "llm.prompt_template.version" = "v1.0"# "llm.prompt_template.variables" = "{\"city\": \"Johannesburg\", \"date\": \"July 11\"}" # JSON serialized ...
It can also be used as a decorator:
@using_prompt_template( template=prompt_template, version=prompt_template_variables, variables="v1.0",)defcall_fn(*args,**kwargs):# Calls within this function will generate spans with the attributes:# "llm.prompt_template.template" = "Please describe the weather forecast for {city} on {date}"# "llm.prompt_template.version" = "v1.0"# "llm.prompt_template.variables" = "{\"city\": \"Johannesburg\", \"date\": \"July 11\"}" # JSON serialized ...
using_attributes
Context manager to add attributes to the current OpenTelemetry Context. OpenInference auto instrumentators will read this Context and pass the attributes fields as span attributes, following the OpenInference semantic conventions. This is a convenient context manager to use if you find yourself using many of the previous ones in conjunction.
from openinference.instrumentation import using_attributestags = ["tag_1","tag_2", ...]metadata ={"key-1": value_1,"key-2": value_2, ...}prompt_template ="Please describe the weather forecast for {city} on {date}"prompt_template_variables ={"city":"Johannesburg","date":"July 11"}prompt_template_version ="v1.0"withusing_attributes( session_id="my-session-id", user_id="my-user-id", metadata=metadata, tags=tags, prompt_template=prompt_template, prompt_template_version=prompt_template_version, prompt_template_variables=prompt_template_variables,):# Calls within this block will generate spans with the attributes:# "session.id" = "my-session-id"# "user.id" = "my-user-id"# "metadata" = "{\"key-1\": value_1, \"key-2\": value_2, ... }" # JSON serialized# "tag.tags" = "["tag_1","tag_2",...]"# "llm.prompt_template.template" = "Please describe the weather forecast for {city} on {date}"# "llm.prompt_template.variables" = "{\"city\": \"Johannesburg\", \"date\": \"July 11\"}" # JSON serialized# "llm.prompt_template.version " = "v1.0" ...
The previous example is equivalent to doing the following, making using_attributes a very convenient tool for the more complex settings.
with (using_session("my-session-id"),using_user("my-user-id"),using_metadata(metadata),using_tags(tags),using_prompt_template( template=prompt_template, version=prompt_template_version, variables=prompt_template_variables, ),):# Calls within this block will generate spans with the attributes:# "session.id" = "my-session-id"# "user.id" = "my-user-id"# "metadata" = "{\"key-1\": value_1, \"key-2\": value_2, ... }" # JSON serialized# "tag.tags" = "["tag_1","tag_2",...]"# "llm.prompt_template.template" = "Please describe the weather forecast for {city} on {date}"# "llm.prompt_template.variables" = "{\"city\": \"Johannesburg\", \"date\": \"July 11\"}" # JSON serialized# "llm.prompt_template.version " = "v1.0" ...
It can also be used as a decorator:
@using_attributes( session_id="my-session-id", user_id="my-user-id", metadata=metadata, tags=tags, prompt_template=prompt_template, prompt_template_version=prompt_template_version, prompt_template_variables=prompt_template_variables,)defcall_fn(*args,**kwargs):# Calls within this function will generate spans with the attributes:# "session.id" = "my-session-id"# "user.id" = "my-user-id"# "metadata" = "{\"key-1\": value_1, \"key-2\": value_2, ... }" # JSON serialized# "tag.tags" = "["tag_1","tag_2",...]"# "llm.prompt_template.template" = "Please describe the weather forecast for {city} on {date}"# "llm.prompt_template.variables" = "{\"city\": \"Johannesburg\", \"date\": \"July 11\"}" # JSON serialized# "llm.prompt_template.version " = "v1.0" ...
get_attributes_from_context
Our OpenInference core instrumentation package offers a convenience function, get_attributes_from_context, to read the context attributes set above from OTEL context.
In the following example, we assume the following are set in the OTEL context:
tags = ["tag_1","tag_2"]metadata ={"key-1":1,"key-2":"2",}prompt_template ="Please describe the weather forecast for {city} on {date}"prompt_template_variables ={"city":"Johannesburg","date":"July 11"}prompt_template_version ="v1.0"
We then use get_attributes_from_context to extract them from the OTEL context. You can use it in your manual instrumentation to attach these attributes to your spans.
from openinference.instrumentation import get_attributes_from_contextspan.set_attributes(dict(get_attributes_from_context()))# The span will then have the following attributes attached:# {# 'session.id': 'my-session-id',# 'user.id': 'my-user-id',# 'metadata': '{"key-1": 1, "key-2": "2"}',# 'tag.tags': ['tag_1', 'tag_2'],# 'llm.prompt_template.template': 'Please describe the weather forecast for {city} on {date}',# 'llm.prompt_template.version': 'v1.0',# 'llm.prompt_template.variables': '{"city": "Johannesburg", "date": "July 11"}'# }