LogoLogo
Python SDKSlack
  • Documentation
  • Cookbooks
  • Self-Hosting
  • Release Notes
  • Reference
  • Arize AI
  • Quickstarts
  • ✨Arize Copilot
  • Arize AI for Agents
  • Concepts
    • Agent Evaluation
    • Tracing
      • What is OpenTelemetry?
      • What is OpenInference?
      • Openinference Semantic Conventions
    • Evaluation
  • 🧪Develop
    • Quickstart: Experiments
    • Datasets
      • Create a dataset
      • Update a dataset
      • Export a dataset
    • Experiments
      • Run experiments
      • Run experiments with code
        • Experiments SDK differences in AX vs Phoenix
        • Log experiment results via SDK
      • Evaluate experiments
      • Evaluate experiment with code
      • CI/CD with experiments
        • Github Action Basics
        • Gitlab CI/CD Basics
      • Download experiment
    • Prompt Playground
      • Use tool calling
      • Use image inputs
      • Replay spans
      • Compare prompts side-by-side
      • Load a dataset into playground
      • Save playground outputs as an experiment
      • ✨Copilot: prompt builder
    • Playground Integrations
      • OpenAI
      • Azure OpenAI
      • AWS Bedrock
      • VertexAI
      • Custom LLM Models
    • Prompt Hub
  • 🧠Evaluate
    • Online Evals
      • Run evaluations in the UI
      • Run evaluations with code
      • Test LLM evaluator in playground
      • View task details & logs
      • ✨Copilot: Eval Builder
      • ✨Copilot: Eval Analysis
      • ✨Copilot: RAG Analysis
    • Experiment Evals
    • LLM as a Judge
      • Custom Eval Templates
      • Arize Templates
        • Agent Tool Calling
        • Agent Tool Selection
        • Agent Parameter Extraction
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Hallucinations
        • Q&A on Retrieved Data
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Citation
        • User Frustration
        • SQL Generation
    • Code Evaluations
    • Human Annotations
  • 🔭Observe
    • Quickstart: Tracing
    • Tracing
      • Setup tracing
      • Trace manually
        • Trace inputs and outputs
        • Trace function calls
        • Trace LLM, Retriever and Tool Spans
        • Trace prompt templates & variables
        • Trace as Inferences
        • Send Traces from Phoenix -> Arize
        • Advanced Tracing (OTEL) Examples
      • Add metadata
        • Add events, exceptions and status
        • Logging Latent Metadata
        • Add attributes, metadata and tags
        • Send data to a specific project
        • Get the current span context and tracer
      • Configure tracing options
        • Configure OTEL tracer
        • Mask span attributes
        • Redact sensitive data from traces
        • Instrument with OpenInference helpers
      • Query traces
        • Filter Traces
          • Time Filtering
        • Export Traces
        • ✨AI Powered Search & Filter
        • ✨AI Powered Trace Analysis
        • ✨AI Span Analysis & Evaluation
    • Tracing Integrations
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • Hugging Face smolagents
      • Autogen
      • Google GenAI (Gemini)
      • Model Context Protocol (MCP)
      • Vertex AI
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • MistralAI
      • Anthropic
      • LangFlow
      • Haystack
      • LiteLLM
      • CrewAI
      • Groq
      • DSPy
      • Guardrails AI
      • Prompt flow
      • Vercel AI SDK
      • Llama
      • Together AI
      • OpenTelemetry (arize-otel)
      • BeeAI
    • Evals on Traces
    • Guardrails
    • Sessions
    • Dashboards
      • Dashboard Widgets
      • Tracking Token Usage
      • ✨Copilot: Dashboard Widget Creation
    • Monitors
      • Integrations: Monitors
        • Slack
          • Manual Setup
        • OpsGenie
        • PagerDuty
      • LLM Red Teaming
    • Custom Metrics & Analytics
      • Arize Query Language Syntax
        • Conditionals and Filters
        • All Operators
        • All Functions
      • Custom Metric Examples
      • ✨Copilot: ArizeQL Generator
  • 📈Machine Learning
    • Machine Learning
      • User Guide: ML
      • Quickstart: ML
      • Concepts: ML
        • What Is A Model Schema
        • Delayed Actuals and Tags
        • ML Glossary
      • How To: ML
        • Upload Data to Arize
          • Pandas SDK Example
          • Local File Upload
            • File Upload FAQ
          • Table Ingestion Tuning
          • Wildcard Paths for Cloud Storage
          • Troubleshoot Data Upload
          • Sending Data FAQ
        • Monitors
          • ML Monitor Types
          • Configure Monitors
            • Notifications Providers
          • Programmatically Create Monitors
          • Best Practices for Monitors
        • Dashboards
          • Dashboard Widgets
          • Dashboard Templates
            • Model Performance
            • Pre-Production Performance
            • Feature Analysis
            • Drift
          • Programmatically Create Dashboards
        • Performance Tracing
          • Time Filtering
          • ✨Copilot: Performance Insights
        • Drift Tracing
          • ✨Copilot: Drift Insights
          • Data Distribution Visualization
          • Embeddings for Tabular Data (Multivariate Drift)
        • Custom Metrics
          • Arize Query Language Syntax
            • Conditionals and Filters
            • All Operators
            • All Functions
          • Custom Metric Examples
          • Custom Metrics Query Language
          • ✨Copilot: ArizeQL Generator
        • Troubleshoot Data Quality
          • ✨Copilot: Data Quality Insights
        • Explainability
          • Interpreting & Analyzing Feature Importance Values
          • SHAP
          • Surrogate Model
          • Explainability FAQ
          • Model Explainability
        • Bias Tracing (Fairness)
        • Export Data to Notebook
        • Automate Model Retraining
        • ML FAQ
      • Use Cases: ML
        • Binary Classification
          • Fraud
          • Insurance
        • Multi-Class Classification
        • Regression
          • Lending
          • Customer Lifetime Value
          • Click-Through Rate
        • Timeseries Forecasting
          • Demand Forecasting
          • Churn Forecasting
        • Ranking
          • Collaborative Filtering
          • Search Ranking
        • Natural Language Processing (NLP)
        • Common Industry Use Cases
      • Integrations: ML
        • Google BigQuery
          • GBQ Views
          • Google BigQuery FAQ
        • Snowflake
          • Snowflake Permissions Configuration
        • Databricks
        • Google Cloud Storage (GCS)
        • Azure Blob Storage
        • AWS S3
          • Private Image Link Access Via AWS S3
        • Kafka
        • Airflow Retrain
        • Amazon EventBridge Retrain
        • MLOps Partners
          • Algorithmia
          • Anyscale
          • Azure & Databricks
          • BentoML
          • CML (DVC)
          • Deepnote
          • Feast
          • Google Cloud ML
          • Hugging Face
          • LangChain 🦜🔗
          • MLflow
          • Neptune
          • Paperspace
          • PySpark
          • Ray Serve (Anyscale)
          • SageMaker
            • Batch
            • RealTime
            • Notebook Instance with Greater than 20GB of Data
          • Spell
          • UbiOps
          • Weights & Biases
      • API Reference: ML
        • Python SDK
          • Pandas Batch Logging
            • Client
            • log
            • Schema
            • TypedColumns
            • EmbeddingColumnNames
            • ObjectDetectionColumnNames
            • PromptTemplateColumnNames
            • LLMConfigColumnNames
            • LLMRunMetadataColumnNames
            • NLP_Metrics
            • AutoEmbeddings
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
          • Single Record Logging
            • Client
            • log
            • TypedValue
            • Ranking
            • Multi-Class
            • Object Detection
            • Embedding
            • LLMRunMetadata
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
        • Java SDK
          • Constructor
          • log
          • bulkLog
          • logValidationRecords
          • logTrainingRecords
        • R SDK
          • Client$new()
          • Client$log()
        • Rest API
    • Computer Vision
      • How to: CV
        • Generate Embeddings
          • How to Generate Your Own Embedding
          • Let Arize Generate Your Embeddings
        • Embedding & Cluster Analyzer
        • ✨Copilot: Embedding Summarization
        • Similarity Search
        • Embedding Drift
        • Embeddings FAQ
      • Integrations: CV
      • Use Cases: CV
        • Image Classification
        • Image Segmentation
        • Object Detection
      • API Reference: CV
Powered by GitBook

Support

  • Chat Us On Slack
  • support@arize.com

Get Started

  • Signup For Free
  • Book A Demo

Copyright © 2025 Arize AI, Inc

On this page
  • Widget Overview
  • Widget Types
  • Experiments
  • Time Series
  • Distribution
  • Statistic
  • Text

Was this helpful?

  1. Observe
  2. Dashboards

Dashboard Widgets

Customize dashboards with widgets

Last updated 6 months ago

Was this helpful?

Widget Overview

Dashboard widgets are the individual tiles that help create a dashboard view. Widgets provide an easy way to customize dashboards and perform ad hoc analysis. They can be used to build dashboards from scratch, or as a way to modify

Widget Types

Experiments

Tracking experiments over time in your dashboard lets you visualize the progress and results of specific evaluations and see how different experiment versions compare.

  1. Start a Dashboard Begin with an existing dashboard, a blank one, or use a created template.

  2. Enter Edit Mode Switch to edit mode to enable adding and configuring widgets.

  3. Add the Experiments Widget Select or drag the 'Experiments' widget into the dashboard to start configuring your experiment tracking.

  4. Select a Dataset Choose the dataset associated with your experiments that you want to visualize.

  5. Choose Evaluations to Track Specify the particular evaluation metrics you want to monitor over time. This can include key metrics you’re using to measure experiment success.

  6. Interactive Experiment Details To view more details for any experiment in the widget, hover over the desired experiment and click to access in-depth insights about that experiment’s metrics, configurations, and results.

Time Series

Use time series widgets to view metrics over time, helping you track trends and monitor performance. Common metrics to visualize in a time series include token count, number of sessions, errors, and costs, among others.

  1. Start a Dashboard Begin with an existing dashboard, create a new blank dashboard, or use a pre-built template.

  2. Enter Edit Mode Switch to edit mode to add widgets and configure their settings.

  3. Add the Time Series Widget Select or drag the 'Time Series' widget into your dashboard.

  4. Define the Plot Choose the metric you want to track. For example, you could monitor attributes.llm.token_count.total to track costs, or select a custom metric you’ve defined. Time series plots are ideal for visualizing data trends over time, making it easy to spot patterns or changes in metrics.

Track Evaluations You can also use time series widgets to track evaluation metrics. For example, you might track label counts over time or create custom evaluation metrics to gain insights into model performance as it evolves.

Distribution

A distribution widget helps analyze the spread and concentration of data within your dashboard, useful for understanding the distribution of dimensions or evaluations.

  1. Begin with a Dashboard Start with an existing dashboard, a new blank one, or a created template.

  2. Enter Edit Mode Enter edit mode to start creating and configuring widgets.

  3. Add the Distribution Widget Select or drag the 'Distribution' widget creation button into your dashboard.

  4. Define the Plot Choose the model you want to analyze and select the distribution type, such as span property or evaluation. Then, select the specific dimension to visualize.

  5. Adjust Display Options

    • For numeric dimensions, you can customize the view by choosing a binning strategy (e.g., equal-width bins or custom intervals).

    • For categorical dimensions, slices will automatically display for each unique value, making it easy to see the proportion of each category.

    If you select a feature with a string data type, values will be bucketed by the unique values rather than numeric ranges. This flexibility allows you to analyze both numerical and categorical data effectively.

Statistic

Highlight essential performance metrics in a snapshot view, perfect for monitoring key metrics across environments.

  1. Start with a Dashboard Use an existing dashboard, create a blank one, or start with a created template.

  2. Enter Edit Mode Switch to edit mode to add and configure widgets.

  3. Add the Statistic Widget Select or drag the 'Statistic' widget square into the dashboard.

  4. Define the Metric Specify the evaluation or performance metric to display. Define the rest of the widget by choosing the model, metric, model environment (e.g., Production, Pre-production), and version (if applicable).

  5. Add Filters for Specific Insights Narrow down the metric by adding filters based on features, actuals, predictions, or other dataset attributes to ensure you're viewing the most relevant data.

Text

Use the text widget to add annotations or metadata directly to your dashboard, providing context and enhancing readability.

  1. Start a Dashboard Choose an existing dashboard, a blank one, or a pre-made template.

  2. Enter Edit Mode Go to edit mode to configure widgets and add information.

  3. Add the Text Widget Select or drag the 'Text' widget square into the dashboard.

  4. Type Annotations Add notes, explanations, and any other relevant information that helps provide context or interpret the data within the dashboard.

Enjoy building insightful, tailored dashboards with these widget options to meet your analysis and monitoring needs!

🔭
templated dashboards.