LogoLogo
Python SDKSlack
  • Documentation
  • Cookbooks
  • Self-Hosting
  • Release Notes
  • Reference
  • Arize AI
  • Quickstarts
  • ✨Arize Copilot
  • Concepts
    • Agent Evaluation
    • Tracing
      • What is OpenTelemetry?
      • What is OpenInference?
      • Openinference Semantic Conventions
    • Evaluation
  • 🧪Develop
    • Quickstart: Experiments
    • Datasets
      • Create a dataset
      • Update a dataset
      • Export a dataset
    • Experiments
      • Run experiments
      • Run experiments with code
        • Experiments SDK differences in AX vs Phoenix
        • Log experiment results via SDK
      • Evaluate experiments
      • Evaluate experiment with code
      • CI/CD with experiments
        • Github Action Basics
        • Gitlab CI/CD Basics
      • Download experiment
    • Prompt Playground
      • Use tool calling
      • Use image inputs
    • Playground Integrations
      • OpenAI
      • Azure OpenAI
      • AWS Bedrock
      • VertexAI
      • Custom LLM Models
    • Prompt Hub
  • 🧠Evaluate
    • Online Evals
      • Run evaluations in the UI
      • Run evaluations with code
      • Test LLM evaluator in playground
      • View task details & logs
      • ✨Copilot: Eval Builder
      • ✨Copilot: Eval Analysis
      • ✨Copilot: RAG Analysis
    • Experiment Evals
    • LLM as a Judge
      • Custom Eval Templates
      • Arize Templates
        • Agent Tool Calling
        • Agent Tool Selection
        • Agent Parameter Extraction
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Hallucinations
        • Q&A on Retrieved Data
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Citation
        • User Frustration
        • SQL Generation
    • Code Evaluations
    • Human Annotations
  • 🔭Observe
    • Quickstart: Tracing
    • Tracing
      • Setup tracing
      • Trace manually
        • Trace inputs and outputs
        • Trace function calls
        • Trace LLM, Retriever and Tool Spans
        • Trace prompt templates & variables
        • Trace as Inferences
        • Send Traces from Phoenix -> Arize
        • Advanced Tracing (OTEL) Examples
      • Add metadata
        • Add events, exceptions and status
        • Add attributes, metadata and tags
        • Send data to a specific project
        • Get the current span context and tracer
      • Configure tracing options
        • Configure OTEL tracer
        • Mask span attributes
        • Redact sensitive data from traces
        • Instrument with OpenInference helpers
      • Query traces
        • Filter Traces
          • Time Filtering
        • Export Traces
        • ✨AI Powered Search & Filter
        • ✨AI Powered Trace Analysis
        • ✨AI Span Analysis & Evaluation
    • Tracing Integrations
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • Hugging Face smolagents
      • Autogen
      • Google GenAI (Gemini)
      • Vertex AI
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • MistralAI
      • Anthropic
      • LangFlow
      • Haystack
      • LiteLLM
      • CrewAI
      • Groq
      • DSPy
      • Guardrails AI
      • Prompt flow
      • Vercel AI SDK
      • Llama
      • Together AI
      • OpenTelemetry (arize-otel)
      • BeeAI
    • Evals on Traces
    • Guardrails
    • Sessions
    • Dashboards
      • Dashboard Widgets
      • Tracking Token Usage
      • ✨Copilot: Dashboard Widget Creation
    • Monitors
      • Integrations: Monitors
        • Slack
          • Manual Setup
        • OpsGenie
        • PagerDuty
      • LLM Red Teaming
    • Custom Metrics & Analytics
      • Arize Query Language Syntax
        • Conditionals and Filters
        • All Operators
        • All Functions
      • Custom Metric Examples
      • ✨Copilot: ArizeQL Generator
  • 📈Machine Learning
    • Machine Learning
      • User Guide: ML
      • Quickstart: ML
      • Concepts: ML
        • What Is A Model Schema
        • Delayed Actuals and Tags
        • ML Glossary
      • How To: ML
        • Upload Data to Arize
          • Pandas SDK Example
          • Local File Upload
            • File Upload FAQ
          • Table Ingestion Tuning
          • Wildcard Paths for Cloud Storage
          • Troubleshoot Data Upload
          • Sending Data FAQ
        • Monitors
          • ML Monitor Types
          • Configure Monitors
            • Notifications Providers
          • Programmatically Create Monitors
          • Best Practices for Monitors
        • Dashboards
          • Dashboard Widgets
          • Dashboard Templates
            • Model Performance
            • Pre-Production Performance
            • Feature Analysis
            • Drift
          • Programmatically Create Dashboards
        • Performance Tracing
          • Time Filtering
          • ✨Copilot: Performance Insights
        • Drift Tracing
          • ✨Copilot: Drift Insights
          • Data Distribution Visualization
          • Embeddings for Tabular Data (Multivariate Drift)
        • Custom Metrics
          • Arize Query Language Syntax
            • Conditionals and Filters
            • All Operators
            • All Functions
          • Custom Metric Examples
          • Custom Metrics Query Language
          • ✨Copilot: ArizeQL Generator
        • Troubleshoot Data Quality
          • ✨Copilot: Data Quality Insights
        • Explainability
          • Interpreting & Analyzing Feature Importance Values
          • SHAP
          • Surrogate Model
          • Explainability FAQ
          • Model Explainability
        • Bias Tracing (Fairness)
        • Export Data to Notebook
        • Automate Model Retraining
        • ML FAQ
      • Use Cases: ML
        • Binary Classification
          • Fraud
          • Insurance
        • Multi-Class Classification
        • Regression
          • Lending
          • Customer Lifetime Value
          • Click-Through Rate
        • Timeseries Forecasting
          • Demand Forecasting
          • Churn Forecasting
        • Ranking
          • Collaborative Filtering
          • Search Ranking
        • Natural Language Processing (NLP)
        • Common Industry Use Cases
      • Integrations: ML
        • Google BigQuery
          • GBQ Views
          • Google BigQuery FAQ
        • Snowflake
          • Snowflake Permissions Configuration
        • Databricks
        • Google Cloud Storage (GCS)
        • Azure Blob Storage
        • AWS S3
          • Private Image Link Access Via AWS S3
        • Kafka
        • Airflow Retrain
        • Amazon EventBridge Retrain
        • MLOps Partners
          • Algorithmia
          • Anyscale
          • Azure & Databricks
          • BentoML
          • CML (DVC)
          • Deepnote
          • Feast
          • Google Cloud ML
          • Hugging Face
          • LangChain 🦜🔗
          • MLflow
          • Neptune
          • Paperspace
          • PySpark
          • Ray Serve (Anyscale)
          • SageMaker
            • Batch
            • RealTime
            • Notebook Instance with Greater than 20GB of Data
          • Spell
          • UbiOps
          • Weights & Biases
      • API Reference: ML
        • Python SDK
          • Pandas Batch Logging
            • Client
            • log
            • Schema
            • TypedColumns
            • EmbeddingColumnNames
            • ObjectDetectionColumnNames
            • PromptTemplateColumnNames
            • LLMConfigColumnNames
            • LLMRunMetadataColumnNames
            • NLP_Metrics
            • AutoEmbeddings
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
          • Single Record Logging
            • Client
            • log
            • TypedValue
            • Ranking
            • Multi-Class
            • Object Detection
            • Embedding
            • LLMRunMetadata
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
        • Java SDK
          • Constructor
          • log
          • bulkLog
          • logValidationRecords
          • logTrainingRecords
        • R SDK
          • Client$new()
          • Client$log()
        • Rest API
    • Computer Vision
      • How to: CV
        • Generate Embeddings
          • How to Generate Your Own Embedding
          • Let Arize Generate Your Embeddings
        • Embedding & Cluster Analyzer
        • ✨Copilot: Embedding Summarization
        • Similarity Search
        • Embedding Drift
        • Embeddings FAQ
      • Integrations: CV
      • Use Cases: CV
        • Image Classification
        • Image Segmentation
        • Object Detection
      • API Reference: CV
Powered by GitBook

Support

  • Chat Us On Slack
  • support@arize.com

Get Started

  • Signup For Free
  • Book A Demo

Copyright © 2025 Arize AI, Inc

On this page

Was this helpful?

  1. Observe
  2. Tracing
  3. Add metadata

Get the current span context and tracer

Last updated 8 months ago

Was this helpful?

Sometimes it's helpful to access whatever the current span is at a point in time so that you can enrich it with more information.

from opentelemetry import trace

current_span = trace.get_current_span()
# enrich 'current_span' with some information

Get Active Context

Example to grab the active context:

import { context, trace } from '@opentelemetry/api';

// Function to demonstrate context usage
function demonstrateActiveContext() {
  // Get the active context
  const activeContext = context.active();

  // Example of using the active context to set and get a value
  const ctxWithValue = context.with(activeContext, () => {
    context.setValue('key', 'value');
  });

  // Accessing the current span if tracing is set up
  const currentSpan = trace.getSpan(activeContext);
}

Get the current span Sometimes it’s helpful to do something with the current/active at a particular point in program execution.

const activeSpan = opentelemetry.trace.getActiveSpan();

// do something with the active span, optionally ending it if that is appropriate for your use case.
const ctx = context.active();
const span = opentelemetry.trace.getSpan(ctx);

// do something with the acquired span, optionally ending it if that is appropriate for your use case.

Get Current Tracer

The tracer in OTEL can be used to create spans.

The following is used to get the tracer:

tracer = trace.get_tracer(__name__)

# Start a new span for the tool function handling
with tracer.start_as_current_span("HandleFunctionCall", attributes={
    SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
    ToolCallAttributes.TOOL_CALL_FUNCTION_NAME: function_call_name,
    ToolCallAttributes.TOOL_CALL_FUNCTION_ARGUMENTS_JSON: str(arguments),
    SpanAttributes.INPUT_VALUE: function_call_name
})

The following is how to get tracer in TS/JS:

import { trace, context } from '@opentelemetry/api';
import { SpanKind, SpanStatusCode } from '@opentelemetry/api';

// Get the tracer
const tracer = trace.getTracer('your-service-name');

// Start a new span for the tool function handling
const span = tracer.startSpan('HandleFunctionCall', {
    kind: SpanKind.INTERNAL,
    attributes: {
        'openinference.span_kind': 'TOOL',
        'tool.call_function_name': functionCallName,
        'tool.call_function_arguments_json': JSON.stringify(arguments),
        'input.value': functionCallName
    }
});

The

Get a span from context It can also be helpful to get the from a given context that isn’t necessarily the active span.

🔭
span
span