LogoLogo
Python SDKSlack
  • Documentation
  • Cookbooks
  • Self-Hosting
  • Release Notes
  • Reference
  • Arize AI
  • Quickstarts
  • ✨Arize Copilot
  • Concepts
    • Agent Evaluation
    • Tracing
      • What is OpenTelemetry?
      • What is OpenInference?
      • Openinference Semantic Conventions
    • Evaluation
  • 🧪Develop
    • Quickstart: Experiments
    • Datasets
      • Create a dataset
      • Update a dataset
      • Export a dataset
    • Experiments
      • Run experiments
      • Run experiments with code
        • Experiments SDK differences in AX vs Phoenix
        • Log experiment results via SDK
      • Evaluate experiments
      • Evaluate experiment with code
      • CI/CD with experiments
        • Github Action Basics
        • Gitlab CI/CD Basics
      • Download experiment
    • Prompt Playground
      • Use tool calling
      • Use image inputs
    • Playground Integrations
      • OpenAI
      • Azure OpenAI
      • AWS Bedrock
      • VertexAI
      • Custom LLM Models
    • Prompt Hub
  • 🧠Evaluate
    • Online Evals
      • Run evaluations in the UI
      • Run evaluations with code
      • Test LLM evaluator in playground
      • View task details & logs
      • ✨Copilot: Eval Builder
      • ✨Copilot: Eval Analysis
      • ✨Copilot: RAG Analysis
    • Experiment Evals
    • LLM as a Judge
      • Custom Eval Templates
      • Arize Templates
        • Agent Tool Calling
        • Agent Tool Selection
        • Agent Parameter Extraction
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Hallucinations
        • Q&A on Retrieved Data
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Citation
        • User Frustration
        • SQL Generation
    • Code Evaluations
    • Human Annotations
  • 🔭Observe
    • Quickstart: Tracing
    • Tracing
      • Setup tracing
      • Trace manually
        • Trace inputs and outputs
        • Trace function calls
        • Trace LLM, Retriever and Tool Spans
        • Trace prompt templates & variables
        • Trace as Inferences
        • Send Traces from Phoenix -> Arize
        • Advanced Tracing (OTEL) Examples
      • Add metadata
        • Add events, exceptions and status
        • Add attributes, metadata and tags
        • Send data to a specific project
        • Get the current span context and tracer
      • Configure tracing options
        • Configure OTEL tracer
        • Mask span attributes
        • Redact sensitive data from traces
        • Instrument with OpenInference helpers
      • Query traces
        • Filter Traces
          • Time Filtering
        • Export Traces
        • ✨AI Powered Search & Filter
        • ✨AI Powered Trace Analysis
        • ✨AI Span Analysis & Evaluation
    • Tracing Integrations
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • Hugging Face smolagents
      • Autogen
      • Google GenAI (Gemini)
      • Model Context Protocol (MCP)
      • Vertex AI
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • MistralAI
      • Anthropic
      • LangFlow
      • Haystack
      • LiteLLM
      • CrewAI
      • Groq
      • DSPy
      • Guardrails AI
      • Prompt flow
      • Vercel AI SDK
      • Llama
      • Together AI
      • OpenTelemetry (arize-otel)
      • BeeAI
    • Evals on Traces
    • Guardrails
    • Sessions
    • Dashboards
      • Dashboard Widgets
      • Tracking Token Usage
      • ✨Copilot: Dashboard Widget Creation
    • Monitors
      • Integrations: Monitors
        • Slack
          • Manual Setup
        • OpsGenie
        • PagerDuty
      • LLM Red Teaming
    • Custom Metrics & Analytics
      • Arize Query Language Syntax
        • Conditionals and Filters
        • All Operators
        • All Functions
      • Custom Metric Examples
      • ✨Copilot: ArizeQL Generator
  • 📈Machine Learning
    • Machine Learning
      • User Guide: ML
      • Quickstart: ML
      • Concepts: ML
        • What Is A Model Schema
        • Delayed Actuals and Tags
        • ML Glossary
      • How To: ML
        • Upload Data to Arize
          • Pandas SDK Example
          • Local File Upload
            • File Upload FAQ
          • Table Ingestion Tuning
          • Wildcard Paths for Cloud Storage
          • Troubleshoot Data Upload
          • Sending Data FAQ
        • Monitors
          • ML Monitor Types
          • Configure Monitors
            • Notifications Providers
          • Programmatically Create Monitors
          • Best Practices for Monitors
        • Dashboards
          • Dashboard Widgets
          • Dashboard Templates
            • Model Performance
            • Pre-Production Performance
            • Feature Analysis
            • Drift
          • Programmatically Create Dashboards
        • Performance Tracing
          • Time Filtering
          • ✨Copilot: Performance Insights
        • Drift Tracing
          • ✨Copilot: Drift Insights
          • Data Distribution Visualization
          • Embeddings for Tabular Data (Multivariate Drift)
        • Custom Metrics
          • Arize Query Language Syntax
            • Conditionals and Filters
            • All Operators
            • All Functions
          • Custom Metric Examples
          • Custom Metrics Query Language
          • ✨Copilot: ArizeQL Generator
        • Troubleshoot Data Quality
          • ✨Copilot: Data Quality Insights
        • Explainability
          • Interpreting & Analyzing Feature Importance Values
          • SHAP
          • Surrogate Model
          • Explainability FAQ
          • Model Explainability
        • Bias Tracing (Fairness)
        • Export Data to Notebook
        • Automate Model Retraining
        • ML FAQ
      • Use Cases: ML
        • Binary Classification
          • Fraud
          • Insurance
        • Multi-Class Classification
        • Regression
          • Lending
          • Customer Lifetime Value
          • Click-Through Rate
        • Timeseries Forecasting
          • Demand Forecasting
          • Churn Forecasting
        • Ranking
          • Collaborative Filtering
          • Search Ranking
        • Natural Language Processing (NLP)
        • Common Industry Use Cases
      • Integrations: ML
        • Google BigQuery
          • GBQ Views
          • Google BigQuery FAQ
        • Snowflake
          • Snowflake Permissions Configuration
        • Databricks
        • Google Cloud Storage (GCS)
        • Azure Blob Storage
        • AWS S3
          • Private Image Link Access Via AWS S3
        • Kafka
        • Airflow Retrain
        • Amazon EventBridge Retrain
        • MLOps Partners
          • Algorithmia
          • Anyscale
          • Azure & Databricks
          • BentoML
          • CML (DVC)
          • Deepnote
          • Feast
          • Google Cloud ML
          • Hugging Face
          • LangChain 🦜🔗
          • MLflow
          • Neptune
          • Paperspace
          • PySpark
          • Ray Serve (Anyscale)
          • SageMaker
            • Batch
            • RealTime
            • Notebook Instance with Greater than 20GB of Data
          • Spell
          • UbiOps
          • Weights & Biases
      • API Reference: ML
        • Python SDK
          • Pandas Batch Logging
            • Client
            • log
            • Schema
            • TypedColumns
            • EmbeddingColumnNames
            • ObjectDetectionColumnNames
            • PromptTemplateColumnNames
            • LLMConfigColumnNames
            • LLMRunMetadataColumnNames
            • NLP_Metrics
            • AutoEmbeddings
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
          • Single Record Logging
            • Client
            • log
            • TypedValue
            • Ranking
            • Multi-Class
            • Object Detection
            • Embedding
            • LLMRunMetadata
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
        • Java SDK
          • Constructor
          • log
          • bulkLog
          • logValidationRecords
          • logTrainingRecords
        • R SDK
          • Client$new()
          • Client$log()
        • Rest API
    • Computer Vision
      • How to: CV
        • Generate Embeddings
          • How to Generate Your Own Embedding
          • Let Arize Generate Your Embeddings
        • Embedding & Cluster Analyzer
        • ✨Copilot: Embedding Summarization
        • Similarity Search
        • Embedding Drift
        • Embeddings FAQ
      • Integrations: CV
      • Use Cases: CV
        • Image Classification
        • Image Segmentation
        • Object Detection
      • API Reference: CV
Powered by GitBook

Support

  • Chat Us On Slack
  • support@arize.com

Get Started

  • Signup For Free
  • Book A Demo

Copyright © 2025 Arize AI, Inc

On this page
  • Install
  • Add Tracing to your MCP Client
  • Add Tracing to your MCP Server
  • Resources

Was this helpful?

  1. Observe
  2. Tracing Integrations

Model Context Protocol (MCP)

Arize provides tracing for MCP clients and servers through OpenInference. This includes the unique capability to trace client to server interactions under a single trace in the correct hierarchy.

The openinference-instrumentation-mcp instrumentor is unique compared to other OpenInference instrumentors. It does not generate any of its own telemetry. Instead, it enables context propagation between MCP clients and servers to unify traces. You still need generate OpenTelemetry traces in both the client and server to see a unified trace.

Install

pip install openinference-instrumentation-mcp arize-otel

Because the MCP instrumentor does not generate its own telemetry, you must use it alongside other instrumentation code to see traces.

The example code below uses OpenAI agents, which you can instrument using:

pip install openinference-instrumentation-openai_agents

Add Tracing to your MCP Client

import asyncio

from agents import Agent, Runner
from agents.mcp import MCPServer, MCPServerStdio
from dotenv import load_dotenv

from arize.otel import register
from openinference.instrumentation.mcp import MCPInstrumentor
from openinference.instrumentation.openai_agents import OpenAIAgentsInstrumentor

load_dotenv()

# Connect to your Arize instance
tracer_provider = register(
   space_id = "your-space-id", # in app space settings page
   api_key = "your-api-key", # in app space settings page
)
MCPInstrumentor().instrument(tracer_provider=tracer_provider)
OpenAIAgentsInstrumentor().instrument(tracer_provider=tracer_provider)

async def run(mcp_server: MCPServer):
    agent = Agent(
        name="Assistant",
        instructions="Use the tools to answer the users question.",
        mcp_servers=[mcp_server],
    )
    while True:
        message = input("\n\nEnter your question (or 'exit' to quit): ")
        if message.lower() == "exit" or message.lower() == "q":
            break
        print(f"\n\nRunning: {message}")
        result = await Runner.run(starting_agent=agent, input=message)
        print(result.final_output)


async def main():
    async with MCPServerStdio(
        name="Financial Analysis Server",
        params={
            "command": "fastmcp",
            "args": ["run", "./server.py"],
        },
        client_session_timeout_seconds=30,
    ) as server:
        await run(server)
        
if __name__ == "__main__":
    asyncio.run(main())

Add Tracing to your MCP Server

import json
import os
from datetime import datetime, timedelta

import openai
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
from pydantic import BaseModel

from arize.otel import register
from openinference.instrumentation.mcp import MCPInstrumentor
from openinference.instrumentation.openai_agents import OpenAIAgentsInstrumentor

load_dotenv()

# You must also connect your MCP server to Arize
tracer_provider = register(
   space_id = "your-space-id", # in app space settings page
   api_key = "your-api-key", # in app space settings page
)
MCPInstrumentor().instrument(tracer_provider=tracer_provider)
OpenAIAgentsInstrumentor().instrument(tracer_provider=tracer_provider)

# Get a tracer to add additional instrumentattion
tracer = tracer_provider.get_tracer("financial-analysis-server")

# Configure OpenAI client
client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
MODEL = "gpt-4-turbo"

# Create MCP server
mcp = FastMCP("Financial Analysis Server")


class StockAnalysisRequest(BaseModel):
    ticker: str
    time_period: str = "short-term"  # short-term, medium-term, long-term


@mcp.tool()
@tracer.tool(name="MCP.analyze_stock") # this OpenInference call adds tracing to this method
def analyze_stock(request: StockAnalysisRequest) -> dict:
    """Analyzes a stock based on its ticker symbol and provides investment recommendations."""

    # Make LLM API call to analyze the stock
    prompt = f"""
    Provide a detailed financial analysis for the stock ticker: {request.ticker}
    Time horizon: {request.time_period}

    Please include:
    1. Company overview
    2. Recent financial performance
    3. Key metrics (P/E ratio, market cap, etc.)
    4. Risk assessment
    5. Investment recommendation

    Format your response as a JSON object with the following structure:
    {{
        "ticker": "{request.ticker}",
        "company_name": "Full company name",
        "overview": "Brief company description",
        "financial_performance": "Analysis of recent performance",
        "key_metrics": {{
            "market_cap": "Value in billions",
            "pe_ratio": "Current P/E ratio",
            "dividend_yield": "Current yield percentage",
            "52_week_high": "Value",
            "52_week_low": "Value"
        }},
        "risk_assessment": "Analysis of risks",
        "recommendation": "Buy/Hold/Sell recommendation with explanation",
        "time_horizon": "{request.time_period}"
    }}
    """

    response = client.chat.completions.create(
        model=MODEL,
        messages=[{"role": "user", "content": prompt}],
        response_format={"type": "json_object"},
    )

    analysis = json.loads(response.choices[0].message.content)
    return analysis

# ... define any additional MCP tools you wish

if __name__ == "__main__":
    mcp.run()

Resources

Last updated 19 hours ago

Was this helpful?

🔭
End to end example
OpenInference package