LogoLogo
Python SDKSlack
  • Documentation
  • Cookbooks
  • Self-Hosting
  • Release Notes
  • Reference
  • Arize AI
  • Quickstarts
  • ✨Arize Copilot
  • Arize AI for Agents
  • Concepts
    • Agent Evaluation
    • Tracing
      • What is OpenTelemetry?
      • What is OpenInference?
      • Openinference Semantic Conventions
    • Evaluation
  • 🧪Develop
    • Quickstart: Experiments
    • Datasets
      • Create a dataset
      • Update a dataset
      • Export a dataset
    • Experiments
      • Run experiments
      • Run experiments with code
        • Experiments SDK differences in AX vs Phoenix
        • Log experiment results via SDK
      • Evaluate experiments
      • Evaluate experiment with code
      • CI/CD with experiments
        • Github Action Basics
        • Gitlab CI/CD Basics
      • Download experiment
    • Prompt Playground
      • Use tool calling
      • Use image inputs
      • Replay spans
      • Compare prompts side-by-side
      • Load a dataset into playground
      • Save playground outputs as an experiment
      • ✨Copilot: prompt builder
    • Playground Integrations
      • OpenAI
      • Azure OpenAI
      • AWS Bedrock
      • VertexAI
      • Custom LLM Models
    • Prompt Hub
  • 🧠Evaluate
    • Online Evals
      • Run evaluations in the UI
      • Run evaluations with code
      • Test LLM evaluator in playground
      • View task details & logs
      • ✨Copilot: Eval Builder
      • ✨Copilot: Eval Analysis
      • ✨Copilot: RAG Analysis
    • Experiment Evals
    • LLM as a Judge
      • Custom Eval Templates
      • Arize Templates
        • Agent Tool Calling
        • Agent Tool Selection
        • Agent Parameter Extraction
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Hallucinations
        • Q&A on Retrieved Data
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Citation
        • User Frustration
        • SQL Generation
    • Code Evaluations
    • Human Annotations
  • 🔭Observe
    • Quickstart: Tracing
    • Tracing
      • Setup tracing
      • Trace manually
        • Trace inputs and outputs
        • Trace function calls
        • Trace LLM, Retriever and Tool Spans
        • Trace prompt templates & variables
        • Trace as Inferences
        • Send Traces from Phoenix -> Arize
        • Advanced Tracing (OTEL) Examples
      • Add metadata
        • Add events, exceptions and status
        • Logging Latent Metadata
        • Add attributes, metadata and tags
        • Send data to a specific project
        • Get the current span context and tracer
      • Configure tracing options
        • Configure OTEL tracer
        • Mask span attributes
        • Redact sensitive data from traces
        • Instrument with OpenInference helpers
      • Query traces
        • Filter Traces
          • Time Filtering
        • Export Traces
        • ✨AI Powered Search & Filter
        • ✨AI Powered Trace Analysis
        • ✨AI Span Analysis & Evaluation
    • Tracing Integrations
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • Hugging Face smolagents
      • Autogen
      • Google GenAI (Gemini)
      • Model Context Protocol (MCP)
      • Vertex AI
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • MistralAI
      • Anthropic
      • LangFlow
      • Haystack
      • LiteLLM
      • CrewAI
      • Groq
      • DSPy
      • Guardrails AI
      • Prompt flow
      • Vercel AI SDK
      • Llama
      • Together AI
      • OpenTelemetry (arize-otel)
      • BeeAI
    • Evals on Traces
    • Guardrails
    • Sessions
    • Dashboards
      • Dashboard Widgets
      • Tracking Token Usage
      • ✨Copilot: Dashboard Widget Creation
    • Monitors
      • Integrations: Monitors
        • Slack
          • Manual Setup
        • OpsGenie
        • PagerDuty
      • LLM Red Teaming
    • Custom Metrics & Analytics
      • Arize Query Language Syntax
        • Conditionals and Filters
        • All Operators
        • All Functions
      • Custom Metric Examples
      • ✨Copilot: ArizeQL Generator
  • 📈Machine Learning
    • Machine Learning
      • User Guide: ML
      • Quickstart: ML
      • Concepts: ML
        • What Is A Model Schema
        • Delayed Actuals and Tags
        • ML Glossary
      • How To: ML
        • Upload Data to Arize
          • Pandas SDK Example
          • Local File Upload
            • File Upload FAQ
          • Table Ingestion Tuning
          • Wildcard Paths for Cloud Storage
          • Troubleshoot Data Upload
          • Sending Data FAQ
        • Monitors
          • ML Monitor Types
          • Configure Monitors
            • Notifications Providers
          • Programmatically Create Monitors
          • Best Practices for Monitors
        • Dashboards
          • Dashboard Widgets
          • Dashboard Templates
            • Model Performance
            • Pre-Production Performance
            • Feature Analysis
            • Drift
          • Programmatically Create Dashboards
        • Performance Tracing
          • Time Filtering
          • ✨Copilot: Performance Insights
        • Drift Tracing
          • ✨Copilot: Drift Insights
          • Data Distribution Visualization
          • Embeddings for Tabular Data (Multivariate Drift)
        • Custom Metrics
          • Arize Query Language Syntax
            • Conditionals and Filters
            • All Operators
            • All Functions
          • Custom Metric Examples
          • Custom Metrics Query Language
          • ✨Copilot: ArizeQL Generator
        • Troubleshoot Data Quality
          • ✨Copilot: Data Quality Insights
        • Explainability
          • Interpreting & Analyzing Feature Importance Values
          • SHAP
          • Surrogate Model
          • Explainability FAQ
          • Model Explainability
        • Bias Tracing (Fairness)
        • Export Data to Notebook
        • Automate Model Retraining
        • ML FAQ
      • Use Cases: ML
        • Binary Classification
          • Fraud
          • Insurance
        • Multi-Class Classification
        • Regression
          • Lending
          • Customer Lifetime Value
          • Click-Through Rate
        • Timeseries Forecasting
          • Demand Forecasting
          • Churn Forecasting
        • Ranking
          • Collaborative Filtering
          • Search Ranking
        • Natural Language Processing (NLP)
        • Common Industry Use Cases
      • Integrations: ML
        • Google BigQuery
          • GBQ Views
          • Google BigQuery FAQ
        • Snowflake
          • Snowflake Permissions Configuration
        • Databricks
        • Google Cloud Storage (GCS)
        • Azure Blob Storage
        • AWS S3
          • Private Image Link Access Via AWS S3
        • Kafka
        • Airflow Retrain
        • Amazon EventBridge Retrain
        • MLOps Partners
          • Algorithmia
          • Anyscale
          • Azure & Databricks
          • BentoML
          • CML (DVC)
          • Deepnote
          • Feast
          • Google Cloud ML
          • Hugging Face
          • LangChain 🦜🔗
          • MLflow
          • Neptune
          • Paperspace
          • PySpark
          • Ray Serve (Anyscale)
          • SageMaker
            • Batch
            • RealTime
            • Notebook Instance with Greater than 20GB of Data
          • Spell
          • UbiOps
          • Weights & Biases
      • API Reference: ML
        • Python SDK
          • Pandas Batch Logging
            • Client
            • log
            • Schema
            • TypedColumns
            • EmbeddingColumnNames
            • ObjectDetectionColumnNames
            • PromptTemplateColumnNames
            • LLMConfigColumnNames
            • LLMRunMetadataColumnNames
            • NLP_Metrics
            • AutoEmbeddings
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
          • Single Record Logging
            • Client
            • log
            • TypedValue
            • Ranking
            • Multi-Class
            • Object Detection
            • Embedding
            • LLMRunMetadata
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
        • Java SDK
          • Constructor
          • log
          • bulkLog
          • logValidationRecords
          • logTrainingRecords
        • R SDK
          • Client$new()
          • Client$log()
        • Rest API
    • Computer Vision
      • How to: CV
        • Generate Embeddings
          • How to Generate Your Own Embedding
          • Let Arize Generate Your Embeddings
        • Embedding & Cluster Analyzer
        • ✨Copilot: Embedding Summarization
        • Similarity Search
        • Embedding Drift
        • Embeddings FAQ
      • Integrations: CV
      • Use Cases: CV
        • Image Classification
        • Image Segmentation
        • Object Detection
      • API Reference: CV
Powered by GitBook

Support

  • Chat Us On Slack
  • support@arize.com

Get Started

  • Signup For Free
  • Book A Demo

Copyright © 2025 Arize AI, Inc

On this page

Was this helpful?

  1. Observe
  2. Tracing Integrations

OpenAI

Last updated 1 month ago

Was this helpful?

Use our code block below to get started using our OpenAIInstrumentor.

# Import open-telemetry dependencies
from arize.otel import register

# Setup OTel via our convenience function
tracer_provider = register(
    space_id = "your-space-id", # in app space settings page
    api_key = "your-api-key", # in app space settings page
    project_name = "your-project-name", # name this to whatever you would like
)

# Import the automatic instrumentor from OpenInference
from openinference.instrumentation.openai import OpenAIInstrumentor

# Finish automatic instrumentation
OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)

The OpenAI auto-instrumentation package can be installed via npm.

npm install @arizeai/openinference-instrumentation-openai
Library
Instrumentation
Version

OpenAI

@arizeai/openinference-instrumentation-openai

The example below utilizes the OpenInference JavaScript OpenAI example.

Navigate to the backend folder.

In addition to the above package, sending traces to Arize requires the following packages: @opentelemetry/exporter-trace-otlp-grpc and @grpc/grpc-js. These package can be installed via npm by running the following command in your shell.

npm install @opentelemetry/exporter-trace-otlp-grpc @grpc/grpc-js

instrumentation.ts should be implemented as below (you'll need to install all of the packages imported below in the same manner as above):

/*instrumentation.ts */

import { registerInstrumentations } from "@opentelemetry/instrumentation";
import { 
  OpenAIInstrumentation 
} from "@arizeai/openinference-instrumentation-openai";
import { ConsoleSpanExporter } from "@opentelemetry/sdk-trace-base";
import {
  NodeTracerProvider,
  SimpleSpanProcessor,
} from "@opentelemetry/sdk-trace-node";
import { resourceFromAttributes } from "@opentelemetry/resources";
import { 
  OTLPTraceExporter as GrpcOTLPTraceExporter 
} from "@opentelemetry/exporter-trace-otlp-grpc"; // Arize specific
import { diag, DiagConsoleLogger, DiagLogLevel } from "@opentelemetry/api";
import { Metadata } from "@grpc/grpc-js"

// For troubleshooting, set the log level to DiagLogLevel.DEBUG
diag.setLogger(new DiagConsoleLogger(), DiagLogLevel.DEBUG);

// Arize specific - Create metadata and add your headers
const metadata = new Metadata();

// Your Arize Space and API Keys, which can be found in the UI
metadata.set('space_id', 'your-space-id');
metadata.set('api_key', 'your-api-key');

const processor = new SimpleSpanProcessor(new ConsoleSpanExporter());
const otlpProcessor = new SimpleSpanProcessor(
  new GrpcOTLPTraceExporter({
    url: "https://otlp.arize.com/v1",
    metadata,
  })
);

const provider = new NodeTracerProvider({
  resource: resourceFromAttributes({
    // Arize specific - The name of a new or preexisting model you 
    // want to export spans to
    "model_id": "your-model-id",
    "model_version": "your-model-version"
  }),
  spanProcessors: [processor, otlpProcessor]
});

registerInstrumentations({
  instrumentations: [new OpenAIInstrumentation({})],
});

provider.register();

If you simultaneously want to send spans to a Phoenix collector, you should also create a span processor pointing to Phoenix and add it to the list of spanProcessors in your provider.

import { 
  OTLPTraceExporter as ProtoOTLPTraceExporter 
} from "@opentelemetry/exporter-trace-otlp-proto";

// Create another SpanProcessor to send spans to Phoenix
const phoenixProcessor = new SimpleSpanProcessor(
    new ProtoOTLPTraceExporter({
      // This is the url where your phoenix server is running
      url: "http://localhost:6006/v1/traces",
    }),
  );

// Add the additional processor to the provider  
const provider = new NodeTracerProvider({
  resource: resourceFromAttributes({
    // Arize specific - The name of a new or preexisting model you 
    // want to export spans to
    "model_id": "your-model-id",
    "model_version": "your-model-version"
  }),
  spanProcessors: [processor, otlpProcessor, phoenixProcessor]
});

Follow the steps from the backend and frontend readme. Or simply run:

docker compose up --build

Tracing Function Calls

Arize has first-class support for instrumenting calls and seeing both input and output messages. We support role types such as system, user, and assistant messages, as well as function calling.

We follow a standardized format for how a trace data should be structured using , which is our open source package based on . The package we are using is , which is a lightweight convenience package to set up OpenTelemetry and send traces to Arize.

Now start asking questions to your LLM app and watch the traces being collected by Arize. For more examples of instrumenting OpenAI applications, check our .

to build run the frontend, backend, and Phoenix all at the same time. Navigate to localhost:3000 to begin sending messages to the chatbot and check out your traces in Arize at or Phoenix at localhost:6006.

Arize simplifies debugging by automatically made by LLMs. With the above code, Arize will receive all function calls and allow users to review the function outputs, arguments, and any parameters used. These traces can be loaded into the prompt playground, where you can experiment with parameters, adjust function definitions, and optimize workflows.

🔭
OpenAI
openinference
OpenTelemetry
arize-otel
openinferenece-instrumentation-openai examples
app.arize.com
tracing function calls
Google Colab
Checkout an end to end example for tracing OpenAI
tutorials/python/llm/tracing/openai at main · Arize-ai/tutorialsGitHub
See the folder for more OpenAI tutorials
Logo
openinference/js/examples/openai at main · Arize-ai/openinferenceGitHub
Logo
Logo