Arize has first-class support for LangChain applications. After instrumentation, you will have a full trace of every part of your LLM application, including input, embeddings, retrieval, functions, and output messages.
We follow a standardized format for how a trace data should be structured using openinference, which is our open source package based on OpenTelemetry.
Use our code block below to get started using our LangChainInstrumentor.
# Import open-telemetry dependenciesfrom arize_otel import register_otel, Endpoints# Setup OTEL via our convenience functionregister_otel( endpoints = Endpoints.ARIZE, space_id ="your-space-id", # in app space settings page api_key ="your-api-key", # in app space settings page model_id ="your-model-id", # name this to whatever you would like)# Import the automatic instrumentor from OpenInferencefrom openinference.instrumentation.langchain import LangChainInstrumentor# Finish automatic instrumentationLangChainInstrumentor().instrument()
For more in-detail demonstration, check our Colab tutorial:
The example below utilizes the OpenInference JavaScript LangChain example.
Navigate to the backend folder.
In addition to the above package, sending traces to Arize requires the following package: @opentelemetry/exporter-trace-otlp-grpc. This package can be installed in your environment by running the following command in your shell.
instrumentation.ts should be implemented as below (you'll need to install all of the packages imported below in the same manner as above):
/*instrumentation.ts */import { LangChainInstrumentation } from"@arizeai/openinference-instrumentation-langchain";import { ConsoleSpanExporter } from"@opentelemetry/sdk-trace-base";import { NodeTracerProvider, SimpleSpanProcessor,} from"@opentelemetry/sdk-trace-node";import { Resource } from"@opentelemetry/resources";import { OTLPTraceExporter as GrpcOTLPTraceExporter } from"@opentelemetry/exporter-trace-otlp-grpc"; // Arize specificimport { diag, DiagConsoleLogger, DiagLogLevel } from"@opentelemetry/api";import { Metadata } from"@grpc/grpc-js";import*as CallbackManagerModule from"@langchain/core/callbacks/manager";// For troubleshooting, set the log level to DiagLogLevel.DEBUGdiag.setLogger(newDiagConsoleLogger(),DiagLogLevel.DEBUG);// Arize specific - Create metadata and add your headersconstmetadata=newMetadata();// Your Arize Space and API Keys, which can be found in the UImetadata.set('space_id','your-space-id');metadata.set('api_key','your-api-key');constprovider=newNodeTracerProvider({ resource:newResource({// Arize specific - The name of a new or preexisting model you // want to export spans to"model_id":"your-model-id","model_version":"your-model-version" }),});provider.addSpanProcessor(newSimpleSpanProcessor(newConsoleSpanExporter()));provider.addSpanProcessor(newSimpleSpanProcessor(newGrpcOTLPTraceExporter({ url:"https://otlp.arize.com/v1", metadata, }), ),);constlcInstrumentation=newLangChainInstrumentation();// LangChain must be manually instrumented as it doesn't have// a traditional module structurelcInstrumentation.manuallyInstrument(CallbackManagerModule);provider.register();
If you simultaneously want to send spans to a Phoenix collector, you should also add the following code blocks, from the original instrumentation.ts files.
import { OTLPTraceExporter as ProtoOTLPTraceExporter } from"@opentelemetry/exporter-trace-otlp-proto";// add as another SpanProcessor below the previous SpanProcessorprovider.addSpanProcessor(newSimpleSpanProcessor(newProtoOTLPTraceExporter({// This is the url where your phoenix server is running url:"http://localhost:6006/v1/traces", }), ),);
Follow the steps from the backend and frontend readme. Or simply run:
dockercomposeup--build
to build run the frontend, backend, and Phoenix all at the same time. Navigate to localhost:3000 to begin sending messages to the chatbot and check out your traces in Arize at app.arize.com or Phoenix at localhost:6006.