Schema
Arize class to organize and map column names containing model data within your Pandas dataframe to Arize.
Import and initialize Arize Schema from arize.utils.types
prediction_id_column_name
str
Contents must be a string limited to 128 characters
feature_column_names
List[str] or TypedColumns
Feature values can be int, float, string, list of strings
(Optional) Column names for features. If TypedColumns is used, the columns will be cast to the provided types prior to logging.
embedding_feature_column_names
(Optional) Dictionary mapping embedding display names to EmbeddingColumnNames
objects
timestamp_column_name
str
The content of this column must be int Unix Timestamps in seconds
(Optional) Column name for timestamps
prediction_label_column_name
str
The content of this column must be convertible to string
(Optional) Column name for categorical prediction values
prediction_score_column_name
str
The content of this column must be int/float.
(Optional Column name for numeric prediction values
actual_label_column_name
str
The content of this column must be convertible to string
(Optional) Column name for categorical ground truth values
actual_score_column_name
str
The content of this column must be int/float.
(Optional) Column name for numeric ground truth
tag_column_names
List[str] or TypedColumns
Tag values can be int, float, string. LImited to 1k values
(Optional) Column names for tags. If TypedColumns is used, the columns will be cast to the provided types prior to logging.
shap_values_column_names
Dict[str,str]
The content of this column must be int/float
(Optional) dict of k-v pairs where k is the feature_colname and v is the corresponding shap_val_col_name. For example, your dataframe contains features columnsfeat1, feat2, feat3,...
and corresponding shap value columns feat1_shap, feat2_shap, feat3_shap,...
You want to set shap_values_column_names = {"feat1": "feat1shap", "feat2": "feat2_shap:", "feat3": "feat3_shap"}
prediction_group_id_column_name
str
The content of this column must be string and is limited to 128 characters
(Required*) Column name for ranking groups or lists in ranking models *for ranking models only
rank_column_name
str
The content of this column must be integer between 1-100
(Required*) Column name for rank of each element on the its group or list *for ranking models only
relevance_score_column_name
str
The content of this column must be int/float
(Required*) Column name for ranking model type numeric ground truth values *for ranking models only
relevance_labels_column_name
str
The content of this column must be a string
(Required*) Column name for ranking model type categorical ground truth values *for ranking models only
object_detection_prediction_column_names
ObjectDetectionColumnNames object containing information defining the predicted bounding boxes' coordinates, categories, and scores.
object_detection_actual_column_names
ObjectDetectionColumnNames object containing information defining the actula bounding boxes' coordinates, categories, and scores.
prompt_column_names
EmbeddingColumnNames object containing the embedding vector data (required) and raw text (optional) for the input text your model acts on
response_column_names
EmbeddingColumnNames object containing the embedding vector data (required) and raw text (optional) for the text your model generates
prompt_template_column_names
PromptTemplateColumnNames object containing the prompt template and prompt template version, both optional
llm_config_column_names
LLMConfigColumnNames object containing the LLM model name (optional) and its hyper-parameters (optional) used at inference time
llm_run_metadata_column_names
LLMRunMetadata object containing metadata about the LLM inference, i.e., token counts and response latency
retrieved_document_ids_column_name
str
The contents of this column must be list of entries convertible to strings
Column name for retrieved document ids
multi_class_threshold_scores_column_name
str
Contents of this column must be a dictionary mapping string class names to float scores.
(Optional) Column name used only for Multi-Label Multi-Class models and determines the minimum prediction value for a class to be considered a positive prediction.
Code Example
1fcd50f4689
ca
[ca, ak]
female
25
1637538845
No Claims
No Claims
[1.27346, -0.2138, ...]
Last updated