LogoLogo
Python SDKSlack
  • Documentation
  • Cookbooks
  • Self-Hosting
  • Release Notes
  • Reference
  • Arize AI
  • Quickstarts
  • โœจArize Copilot
  • Concepts
    • Agent Evaluation
    • Tracing
      • What is OpenTelemetry?
      • What is OpenInference?
      • Openinference Semantic Conventions
    • Evaluation
  • ๐ŸงชDevelop
    • Quickstart: Experiments
    • Datasets
      • Create a dataset
      • Update a dataset
      • Export a dataset
    • Experiments
      • Run experiment
        • Run experiment in code
        • Log experiment results via SDK
        • Experiments SDK differences in AX vs Phoenix
      • Evaluate experiment
        • Evaluate experiment in code
      • CI/CD with experiments
        • Github Action Basics
        • Gitlab CI/CD Basics
      • Download experiment
    • Prompt Playground
      • Span Replay
      • Compare Prompts Side-by-Side
      • Load a Dataset into Playground
      • Save Playground Outputs as an Experiment
      • Using Tools in Playground
      • Image Inputs in Playground
      • โœจCopilot: Prompt Builder
    • Playground Integrations
      • OpenAI
      • Azure OpenAI
      • AWS Bedrock
      • VertexAI
      • Custom LLM Models
    • Prompt Hub
  • ๐Ÿง Evaluate
    • Online Evals
      • Run evaluations in the UI
      • Run evaluations with code
      • Test LLM evaluator in playground
      • View task details & logs
      • โœจCopilot: Eval Builder
      • โœจCopilot: Eval Analysis
      • โœจCopilot: RAG Analysis
    • Experiment Evals
    • LLM as a Judge
      • Custom Eval Templates
      • Arize Templates
        • Agent Tool Calling
        • Agent Tool Selection
        • Agent Parameter Extraction
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Hallucinations
        • Q&A on Retrieved Data
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Citation
        • User Frustration
        • SQL Generation
    • Code Evaluations
    • Human Annotations
      • Annotate spans
      • Setup labeling queues
  • ๐Ÿ”ญObserve
    • Quickstart: Tracing
    • Tracing
      • Setup Tracing
      • How to: Trace Manually
        • Trace Function Calls
        • Instrument with OpenInference Helpers
        • How to Send to a Specific Project and Space ID
        • Get the Current Span/Context and Tracer
        • Log Prompt Templates & Variables
        • Add Attributes, Metadata and Tags to Span
        • Add Events, Exceptions and Status to Spans
        • Configure OTEL Tracer
        • Create LLM, Retriever and Tool Spans
        • Create Tool Spans
        • Log Input
        • Log Outputs
        • Mask Span Attributes
        • Redact Sensitive Data from Traces
        • Send Traces from Phoenix -> Arize
        • Log as Inferences
        • Advanced Tracing (OTEL) Examples
      • How to: Query Traces
        • Filter Traces
          • Time Filtering
        • Export Traces
        • โœจAI Powered Search & Filter
        • โœจAI Powered Trace Analysis
        • โœจAI Span Analysis & Evaluation
    • Tracing Integrations
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • Hugging Face smolagents
      • Autogen
      • Google GenAI (Gemini)
      • Vertex AI
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • MistralAI
      • Anthropic
      • LangFlow
      • Haystack
      • LiteLLM
      • CrewAI
      • Groq
      • DSPy
      • Guardrails AI
      • Prompt flow
      • Vercel AI SDK
      • Llama
      • Together AI
      • OpenTelemetry (arize-otel)
      • BeeAI
    • Evals on Traces
    • Guardrails
    • Sessions
    • Dashboards
      • Dashboard Widgets
      • Tracking Token Usage
      • โœจCopilot: Dashboard Widget Creation
    • Monitors
      • Integrations: Monitors
        • Slack
          • Manual Setup
        • OpsGenie
        • PagerDuty
      • LLM Red Teaming
    • Custom Metrics & Analytics
      • Arize Query Language Syntax
        • Conditionals and Filters
        • All Operators
        • All Functions
      • Custom Metric Examples
      • โœจCopilot: ArizeQL Generator
  • ๐Ÿ“ˆMachine Learning
    • Machine Learning
      • User Guide: ML
      • Quickstart: ML
      • Concepts: ML
        • What Is A Model Schema
        • Delayed Actuals and Tags
        • ML Glossary
      • How To: ML
        • Upload Data to Arize
          • Pandas SDK Example
          • Local File Upload
            • File Upload FAQ
          • Table Ingestion Tuning
          • Wildcard Paths for Cloud Storage
          • Troubleshoot Data Upload
          • Sending Data FAQ
        • Monitors
          • ML Monitor Types
          • Configure Monitors
            • Notifications Providers
          • Programmatically Create Monitors
          • Best Practices for Monitors
        • Dashboards
          • Dashboard Widgets
          • Dashboard Templates
            • Model Performance
            • Pre-Production Performance
            • Feature Analysis
            • Drift
          • Programmatically Create Dashboards
        • Performance Tracing
          • Time Filtering
          • โœจCopilot: Performance Insights
        • Drift Tracing
          • โœจCopilot: Drift Insights
          • Data Distribution Visualization
          • Embeddings for Tabular Data (Multivariate Drift)
        • Custom Metrics
          • Arize Query Language Syntax
            • Conditionals and Filters
            • All Operators
            • All Functions
          • Custom Metric Examples
          • Custom Metrics Query Language
          • โœจCopilot: ArizeQL Generator
        • Troubleshoot Data Quality
          • โœจCopilot: Data Quality Insights
        • Explainability
          • Interpreting & Analyzing Feature Importance Values
          • SHAP
          • Surrogate Model
          • Explainability FAQ
          • Model Explainability
        • Bias Tracing (Fairness)
        • Export Data to Notebook
        • Automate Model Retraining
        • ML FAQ
      • Use Cases: ML
        • Binary Classification
          • Fraud
          • Insurance
        • Multi-Class Classification
        • Regression
          • Lending
          • Customer Lifetime Value
          • Click-Through Rate
        • Timeseries Forecasting
          • Demand Forecasting
          • Churn Forecasting
        • Ranking
          • Collaborative Filtering
          • Search Ranking
        • Natural Language Processing (NLP)
        • Common Industry Use Cases
      • Integrations: ML
        • Google BigQuery
          • GBQ Views
          • Google BigQuery FAQ
        • Snowflake
          • Snowflake Permissions Configuration
        • Databricks
        • Google Cloud Storage (GCS)
        • Azure Blob Storage
        • AWS S3
          • Private Image Link Access Via AWS S3
        • Kafka
        • Airflow Retrain
        • Amazon EventBridge Retrain
        • MLOps Partners
          • Algorithmia
          • Anyscale
          • Azure & Databricks
          • BentoML
          • CML (DVC)
          • Deepnote
          • Feast
          • Google Cloud ML
          • Hugging Face
          • LangChain ๐Ÿฆœ๐Ÿ”—
          • MLflow
          • Neptune
          • Paperspace
          • PySpark
          • Ray Serve (Anyscale)
          • SageMaker
            • Batch
            • RealTime
            • Notebook Instance with Greater than 20GB of Data
          • Spell
          • UbiOps
          • Weights & Biases
      • API Reference: ML
        • Python SDK
          • Pandas Batch Logging
            • Client
            • log
            • Schema
            • TypedColumns
            • EmbeddingColumnNames
            • ObjectDetectionColumnNames
            • PromptTemplateColumnNames
            • LLMConfigColumnNames
            • LLMRunMetadataColumnNames
            • NLP_Metrics
            • AutoEmbeddings
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
          • Single Record Logging
            • Client
            • log
            • TypedValue
            • Ranking
            • Multi-Class
            • Object Detection
            • Embedding
            • LLMRunMetadata
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
        • Java SDK
          • Constructor
          • log
          • bulkLog
          • logValidationRecords
          • logTrainingRecords
        • R SDK
          • Client$new()
          • Client$log()
        • Rest API
    • Computer Vision
      • How to: CV
        • Generate Embeddings
          • How to Generate Your Own Embedding
          • Let Arize Generate Your Embeddings
        • Embedding & Cluster Analyzer
        • โœจCopilot: Embedding Summarization
        • Similarity Search
        • Embedding Drift
        • Embeddings FAQ
      • Integrations: CV
      • Use Cases: CV
        • Image Classification
        • Image Segmentation
        • Object Detection
      • API Reference: CV
Powered by GitBook

Support

  • Chat Us On Slack
  • support@arize.com

Get Started

  • Signup For Free
  • Book A Demo

Copyright ยฉ 2025 Arize AI, Inc

On this page
  • Creating Import Jobs
  • Querying for Import Jobs and Files
  • Deleting Import Jobs
  • Examples

Was this helpful?

  1. Resources
  2. GraphQL API

File Importer API

Learn how to create and delete import jobs and query for job and file details using our programmatic API

Last updated 8 months ago

Was this helpful?

Use the file importer API for a direct path between your cloud storage and the Arize platform.

While the Arize platform has an intuitive user interface for data ingestion workflows, the object store integration provides a direct way to easily set up jobs and automate job creation.

For a brief overview of GraphQL itself, please consult our .

Creating Import Jobs

To create an import job: you must complete the setup steps outlined for GCS or AWS to grant Arize access to your bucket.

Import jobs belong to a Space -- which has a globally unique ID. To create an import job, you'll need to retrieve your space ID from the platform URL:

/organizations/:organization_id/spaces/:space_id.

Import Job Tips:

  • Create a reusable mutation to create a file import job that will read files from your bucket

  • Validate your file import job before you begin your file import job. Using two additional parameters - dryRun and fileName - as inputs when creating the import job mutation.

    • dryRun(boolean): If true, the import job will be attempted but no changes will be written. The validationResult field may be requested to check the validation status.

    • fileName(string): The file name to perform a dry run on. If a file name is not selected, the dry run will be performed on the first file.

mutation dryRunMyImportJob($input: CreateFileImportJobInput!) {
  createFileImportJob(input: $input) {
    validationResult {
      validationStatus
      filePath  
      error {
        code
        message
        row
      }
    }
  }
}

variables:

{
  "input": {
    "spaceId": "space_id",
    "modelName": "My Test Model",
    "modelType": "categorical",
    "modelEnvironmentName": "production",
    "blobStore": "S3",
    "bucketName": "testing-folder",
    "prefix": "myfolder/mysubfolder/",
    "schema": {
      "predictionId": "prediction_id",
      "predictionLabel": "PREDICTION",
      "actualLabel": "ACTUAL",
      "shapValues": "shap/",
      "tags": "tag/",
      "timestamp": "prediction_ts",
      "predictionScore": "PREDICTION_SCORE",
      "actualScore": "ACTUAL_SCORE"
    },
    "dryRun": true
  }
}

Alternatively, you may pass in the inputs directly:

mutation {
  createFileImportJob(input: {
    spaceId: "space_id",
    modelName: "My Test Model",
    modelType: categorical,
    modelEnvironmentName: production,
    blobStore: S3,
    bucketName: "testing-folder",
    prefix: "myfolder/mysubfolder/",
    schema: {
      predictionId: "prediction_id",
      predictionLabel: "PREDICTION",
      actualLabel: "ACTUAL",
      shapValues: "shap/",
      tags: "tag/",
      timestamp: "prediction_ts",
      predictionScore: "PREDICTION_SCORE",
      actualScore: "ACTUAL_SCORE"
    },
    dryRun: true
  }) {
    validationResult {
      validationStatus
      filePath  
      error {
        code
        message
        row
      }
    }
  }
}
mutation createMyNewImportJob($input: CreateFileImportJobInput!) {
  createFileImportJob(input: $input) {
    fileImportJob {
      id
    }
  }
}

variables

{
  "input": {
    "spaceId": "space_id",
    "modelName": "My Test Model",
    "modelType": "categorical",
    "modelEnvironmentName": "production",
    "blobStore": "S3",
    "bucketName": "testing-folder",
    "prefix": "myfolder/mysubfolder/",
    "schema": {
      "predictionId": "prediction_id",
      "predictionLabel": "PREDICTION",
      "actualLabel": "ACTUAL",
      "shapValues": "shap/",
      "tags": "tag/",
      "timestamp": "prediction_ts",
      "predictionScore": "PREDICTION_SCORE",
      "actualScore": "ACTUAL_SCORE"
    }
  }
}

Alternatively, you may pass in the inputs directly:

mutation {
  createFileImportJob(input: {
    spaceId: "space_id",
    modelName: "My Test Model",
    modelType: categorical,
    modelEnvironmentName: production,
    blobStore: S3,
    bucketName: "testing-folder",
    prefix: "myfolder/mysubfolder/",
    schema: {
      predictionId: "prediction_id",
      predictionLabel: "PREDICTION",
      actualLabel: "ACTUAL",
      shapValues: "shap/",
      tags: "tag/",
      timestamp: "prediction_ts",
      predictionScore: "PREDICTION_SCORE",
      actualScore: "ACTUAL_SCORE"
    }
  }) {
    fileImportJob {
      id
    }
  }
}

The variables provided are an example of one particular mapping.

Querying for Import Jobs and Files

You can query for import jobs off of a Space node.

query {
  node(id: "space_id") {
    ... on Space {
      importJobs(first: 50) {
        edges {
          node {
            id
            modelName
            totalFilesCount
            schema {
              predictionId
              predictionLabel
            }
          }
        }
      }
    }
  }
}

Query fields within an import job given specific criteria using the FileImportJobConnection from a Space. If you have a large number of import jobs, you will have to use pagination to pull the complete list. This data can then be viewed or used in other queries.

To view files that belong to an import job, query for files using an import job node since the files belong to an import job. For instance, to view failing files and their error message, use the FileImportJobFileConnection which returns files with a passed status or all files if no status is provided. You may additionally filter files based on a date range, providing an RFC3339 compliant date time shown below.

query {
  node(id: "import_job_id") {
    ... on FileImportJob {
      files(
        first: 25
        status: FAILED
        startTime: "2023-01-02T01:00:00Z"
        endTime: "2023-02-01T01:00:00Z"
      ) {
        edges {
          node {
            id
            filePath
            error {
              message
            }
          }
        }        
      }
    }
  }
}

Deleting Import Jobs

Deleting import jobs using a mutation simply requires you to know the ID of the import job you want to delete.

mutation {
  deleteFileImportJob(input: {jobId: "job_id"}) {
    space {
      id
    }
  }
}

Examples

API Use Cases
Example Colabs

Creating a File Import Job

Querying for Failed Files of an Import Job

For more information on mapping your file, please consult the file schema documentation located on within each data connector page or on the available fields for all queries and mutations.

๐Ÿ“š
introduction
here
here
here
Colab
Colab
LogoGoogle Colaboratory
Create a File Import Job
LogoGoogle Colaboratory
Query for jobs and files