LogoLogo
Python SDKSlack
  • Documentation
  • Cookbooks
  • Self-Hosting
  • Release Notes
  • Reference
  • Arize AI
  • Quickstarts
  • โœจArize Copilot
  • Concepts
    • Agent Evaluation
    • Tracing
      • What is OpenTelemetry?
      • What is OpenInference?
      • Openinference Semantic Conventions
    • Evaluation
  • ๐ŸงชDevelop
    • Quickstart: Experiments
    • Datasets
      • Create a dataset
      • Update a dataset
      • Export a dataset
    • Experiments
      • Run experiment
        • Run experiment in code
        • Log experiment results via SDK
        • Experiments SDK differences in AX vs Phoenix
      • Evaluate experiment
        • Evaluate experiment in code
      • CI/CD with experiments
        • Github Action Basics
        • Gitlab CI/CD Basics
      • Download experiment
    • Prompt Playground
      • Span Replay
      • Compare Prompts Side-by-Side
      • Load a Dataset into Playground
      • Save Playground Outputs as an Experiment
      • Using Tools in Playground
      • Image Inputs in Playground
      • โœจCopilot: Prompt Builder
    • Playground Integrations
      • OpenAI
      • Azure OpenAI
      • AWS Bedrock
      • VertexAI
      • Custom LLM Models
    • Prompt Hub
  • ๐Ÿง Evaluate
    • Online Evals
      • Run evaluations in the UI
      • Run evaluations with code
      • Test LLM evaluator in playground
      • View task details & logs
      • โœจCopilot: Eval Builder
      • โœจCopilot: Eval Analysis
      • โœจCopilot: RAG Analysis
    • Experiment Evals
    • LLM as a Judge
      • Custom Eval Templates
      • Arize Templates
        • Agent Tool Calling
        • Agent Tool Selection
        • Agent Parameter Extraction
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Hallucinations
        • Q&A on Retrieved Data
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Citation
        • User Frustration
        • SQL Generation
    • Code Evaluations
    • Human Annotations
      • Annotate spans
      • Setup labeling queues
  • ๐Ÿ”ญObserve
    • Quickstart: Tracing
    • Tracing
      • Setup Tracing
      • How to: Trace Manually
        • Trace Function Calls
        • Instrument with OpenInference Helpers
        • How to Send to a Specific Project and Space ID
        • Get the Current Span/Context and Tracer
        • Log Prompt Templates & Variables
        • Add Attributes, Metadata and Tags to Span
        • Add Events, Exceptions and Status to Spans
        • Configure OTEL Tracer
        • Create LLM, Retriever and Tool Spans
        • Create Tool Spans
        • Log Input
        • Log Outputs
        • Mask Span Attributes
        • Redact Sensitive Data from Traces
        • Send Traces from Phoenix -> Arize
        • Log as Inferences
        • Advanced Tracing (OTEL) Examples
      • How to: Query Traces
        • Filter Traces
          • Time Filtering
        • Export Traces
        • โœจAI Powered Search & Filter
        • โœจAI Powered Trace Analysis
        • โœจAI Span Analysis & Evaluation
    • Tracing Integrations
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • Hugging Face smolagents
      • Autogen
      • Google GenAI (Gemini)
      • Vertex AI
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • MistralAI
      • Anthropic
      • LangFlow
      • Haystack
      • LiteLLM
      • CrewAI
      • Groq
      • DSPy
      • Guardrails AI
      • Prompt flow
      • Vercel AI SDK
      • Llama
      • Together AI
      • OpenTelemetry (arize-otel)
      • BeeAI
    • Evals on Traces
    • Guardrails
    • Sessions
    • Dashboards
      • Dashboard Widgets
      • Tracking Token Usage
      • โœจCopilot: Dashboard Widget Creation
    • Monitors
      • Integrations: Monitors
        • Slack
          • Manual Setup
        • OpsGenie
        • PagerDuty
      • LLM Red Teaming
    • Custom Metrics & Analytics
      • Arize Query Language Syntax
        • Conditionals and Filters
        • All Operators
        • All Functions
      • Custom Metric Examples
      • โœจCopilot: ArizeQL Generator
  • ๐Ÿ“ˆMachine Learning
    • Machine Learning
      • User Guide: ML
      • Quickstart: ML
      • Concepts: ML
        • What Is A Model Schema
        • Delayed Actuals and Tags
        • ML Glossary
      • How To: ML
        • Upload Data to Arize
          • Pandas SDK Example
          • Local File Upload
            • File Upload FAQ
          • Table Ingestion Tuning
          • Wildcard Paths for Cloud Storage
          • Troubleshoot Data Upload
          • Sending Data FAQ
        • Monitors
          • ML Monitor Types
          • Configure Monitors
            • Notifications Providers
          • Programmatically Create Monitors
          • Best Practices for Monitors
        • Dashboards
          • Dashboard Widgets
          • Dashboard Templates
            • Model Performance
            • Pre-Production Performance
            • Feature Analysis
            • Drift
          • Programmatically Create Dashboards
        • Performance Tracing
          • Time Filtering
          • โœจCopilot: Performance Insights
        • Drift Tracing
          • โœจCopilot: Drift Insights
          • Data Distribution Visualization
          • Embeddings for Tabular Data (Multivariate Drift)
        • Custom Metrics
          • Arize Query Language Syntax
            • Conditionals and Filters
            • All Operators
            • All Functions
          • Custom Metric Examples
          • Custom Metrics Query Language
          • โœจCopilot: ArizeQL Generator
        • Troubleshoot Data Quality
          • โœจCopilot: Data Quality Insights
        • Explainability
          • Interpreting & Analyzing Feature Importance Values
          • SHAP
          • Surrogate Model
          • Explainability FAQ
          • Model Explainability
        • Bias Tracing (Fairness)
        • Export Data to Notebook
        • Automate Model Retraining
        • ML FAQ
      • Use Cases: ML
        • Binary Classification
          • Fraud
          • Insurance
        • Multi-Class Classification
        • Regression
          • Lending
          • Customer Lifetime Value
          • Click-Through Rate
        • Timeseries Forecasting
          • Demand Forecasting
          • Churn Forecasting
        • Ranking
          • Collaborative Filtering
          • Search Ranking
        • Natural Language Processing (NLP)
        • Common Industry Use Cases
      • Integrations: ML
        • Google BigQuery
          • GBQ Views
          • Google BigQuery FAQ
        • Snowflake
          • Snowflake Permissions Configuration
        • Databricks
        • Google Cloud Storage (GCS)
        • Azure Blob Storage
        • AWS S3
          • Private Image Link Access Via AWS S3
        • Kafka
        • Airflow Retrain
        • Amazon EventBridge Retrain
        • MLOps Partners
          • Algorithmia
          • Anyscale
          • Azure & Databricks
          • BentoML
          • CML (DVC)
          • Deepnote
          • Feast
          • Google Cloud ML
          • Hugging Face
          • LangChain ๐Ÿฆœ๐Ÿ”—
          • MLflow
          • Neptune
          • Paperspace
          • PySpark
          • Ray Serve (Anyscale)
          • SageMaker
            • Batch
            • RealTime
            • Notebook Instance with Greater than 20GB of Data
          • Spell
          • UbiOps
          • Weights & Biases
      • API Reference: ML
        • Python SDK
          • Pandas Batch Logging
            • Client
            • log
            • Schema
            • TypedColumns
            • EmbeddingColumnNames
            • ObjectDetectionColumnNames
            • PromptTemplateColumnNames
            • LLMConfigColumnNames
            • LLMRunMetadataColumnNames
            • NLP_Metrics
            • AutoEmbeddings
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
          • Single Record Logging
            • Client
            • log
            • TypedValue
            • Ranking
            • Multi-Class
            • Object Detection
            • Embedding
            • LLMRunMetadata
            • utils.types.ModelTypes
            • utils.types.Metrics
            • utils.types.Environments
        • Java SDK
          • Constructor
          • log
          • bulkLog
          • logValidationRecords
          • logTrainingRecords
        • R SDK
          • Client$new()
          • Client$log()
        • Rest API
    • Computer Vision
      • How to: CV
        • Generate Embeddings
          • How to Generate Your Own Embedding
          • Let Arize Generate Your Embeddings
        • Embedding & Cluster Analyzer
        • โœจCopilot: Embedding Summarization
        • Similarity Search
        • Embedding Drift
        • Embeddings FAQ
      • Integrations: CV
      • Use Cases: CV
        • Image Classification
        • Image Segmentation
        • Object Detection
      • API Reference: CV
Powered by GitBook

Support

  • Chat Us On Slack
  • support@arize.com

Get Started

  • Signup For Free
  • Book A Demo

Copyright ยฉ 2025 Arize AI, Inc

On this page
  • Creating Import Jobs
  • Querying for Import Jobs
  • Pausing Import Jobs
  • Resuming Import Jobs
  • Event-Based Table Import Jobs
  • Deleting Import Jobs
  • Updating Table Ingestion Parameters
  • Updating Table Ingestion Schema

Was this helpful?

  1. Resources
  2. GraphQL API

Table Importer API

Learn how to create, pause, resume, and delete table import jobs, and update table ingestion parameters programmatically using the GraphQL API.

Last updated 3 months ago

Was this helpful?

Use the table importer API to programmatically connect your data warehouse with the Arize platform.

For a brief overview of GraphQL itself, please consult our .

Creating Import Jobs

To create an import job: you must first configure the necessary permissions and access for , , or .

Import jobs are localized to a Space. To create an import job, retrieve your space ID from the platform URL:

/organizations/:organization_id/spaces/:space_id.

Import Job Tips:

  • Create a reusable mutation to easily configure multiple table import jobs

  • Validate your table import job before you actually create the job with thedryRun parameter when creating the import job mutation

    • dryRun(boolean): If true, Arize will attempt the import job with no written changes. Use the validationResult to check validation status

mutation dryRunTableImportJob($input: CreateTableImportJobInput!) {
  createTableImportJob(input: $input) {
    validationResult {
      validationStatus
      error {
        message
      }
    }
  }
}

variables:

{
  "input": {
    "spaceId": "space_id",
    "modelName": "My Test Model",
    "modelType": "score_categorical",
    "modelEnvironmentName": "production",
    "tableStore": "BigQuery",
    "bigQueryTableConfig": {
      "projectId": "test-project-id",
      "dataset": "test-dataset",
      "tableName": "test-table"
    },
    "schema": {
      "predictionId": "prediction_id",
      "predictionLabel": "prediction",
      "timestamp": "prediction_ts",
      "features": "feature_",
      "actualLabel": "actual",
      "version": "model_version",
      "tags": "tag_",
      "changeTimestamp": "partition_timestamp"
    },
    "dryRun": true
  }
}

Alternatively, you may pass in the inputs directly:

mutation {
  createTableImportJob(input: {
    spaceId: "space_id",
    modelName: "My Test Model",
    modelType: score_categorical,
    modelEnvironmentName: production,
    tableStore: BigQuery,
    bigQueryTableConfig: {
      projectId: "test-project-id",
      dataset: "test-dataset",
      tableName: "test-table"
    },
    schema: {
      predictionId: "prediction_id",
      predictionLabel: "prediction",
      timestamp: "prediction_ts",
      features: "feature_",
      actualLabel: "actual",
      version: "model_version",
      tags: "tag_",
      changeTimestamp: "partition_timestamp"
    },
    dryRun: true
  }){
    validationResult {
      validationStatus
      error {
        message
      }
    }
  }
}
mutation createTableImportJob($input: CreateTableImportJobInput!) {
  createTableImportJob(input: $input) {
    tableImportJob {
      id
    }
  }
}

variables

{
  "input": {
    "spaceId": "space_id",
    "modelName": "My Test Model",
    "modelType": "score_categorical",
    "modelEnvironmentName": "production",
    "tableStore": "BigQuery",
    "bigQueryTableConfig": {
      "projectId": "test-project-id",
      "dataset": "test-dataset",
      "tableName": "test-table"
    },
    "schema": {
      "predictionId": "prediction_id",
      "predictionLabel": "prediction",
      "timestamp": "prediction_ts",
      "features": "feature_",
      "actualLabel": "actual",
      "version": "model_version",
      "tags": "tag_",
      "changeTimestamp": "partition_timestamp"
    }
  }
}

Alternatively, you may pass in the inputs directly:

mutation {
  createTableImportJob(input: {
    spaceId: "space_id",
    modelName: "My Test Model",
    modelType: score_categorical,
    modelEnvironmentName: production,
    tableStore: BigQuery,
    bigQueryTableConfig: {
      projectId: "test-project-id",
      dataset: "test-dataset",
      tableName: "test-table"
    },
    schema: {
      predictionId: "prediction_id",
      predictionLabel: "prediction",
      timestamp: "prediction_ts",
      features: "feature_",
      actualLabel: "actual",
      version: "model_version",
      tags: "tag_",
      changeTimestamp: "partition_timestamp"
    }
  }){
  tableImportJob {
      id
    }
  }
}

The variables in the example above are for one mapping with BigQuery.

Querying for Import Jobs

You can query for table import jobs using a Space node.

query {
  node(id: "space_id") {
    ... on Space {
      tableJobs(first: 50) {
        edges {
          node {
            id
            modelName
            jobStatus
	    totalQueriesFailedCount
            totalQueriesSuccessCount
          }
        }
      }
    }
  }
}

If you have a large number of import jobs, use pagination for the complete list to view or use in your queries/mutations.

Query for fields directly from a specific import job using the TableImportJob node and ID.

To view the queries for a given import job, use the TableImportJobQueryConnection that returns the total number of queries and information on the individual queries.

query {
  node(id: "ID") {
    ... on TableImportJob {
      queries(first: 10) {
        totalCount
        edges{
          node {
            queryId
            createdAt
            recordsProcessedCount
            windowStartTimestamp
      	    windowEndTimestamp
          }
        }
      }
    }
  }
}

Pausing Import Jobs

Pause an existing table import job with the pauseTableImportJob mutation and jobID.

mutation {
  pauseTableImportJob(input: {jobId: "ID"}) {
    tableImportJob {
      jobStatus
    }
  }
}

Resuming Import Jobs

Resume a paused import job by using the startTableImportJob mutation and job ID.

mutation {
  startTableImportJob(input: {jobId: "ID"}) {
    tableImportJob {
      jobStatus
    }
  }
}

Event-Based Table Import Jobs

Available for Snowflake only.

If you are connecting to a warehouse or table for the first time, please complete the one-time permissions setup. For assistance, contact support@arize.com.

Step 1: Create Table Job

To enable event-driven ingestion, set up the table connection and initialize the job by running the following mutation:

mutation CreateTableJob {
 createTriggeredOngoingTableImportJob(input: {
  spaceId: "space_id",  
  modelName: "model-name", 
  modelType: score_categorical, 
  modelEnvironmentName: production,
  tableStore: Snowflake,
  snowflakeTableConfig: {
    accountID: "snowflake-account-id",
    schema:"snowflake-schema",
    database: "database-name",
    tableName:"table-name"
  },
  schema: {
    predictionId: "PRED_ID",
    predictionLabel: "PRED_LABEL"
    timestamp:"TIMESTAMP",
    featuresList: [],
    tagsList: [],
    changeTimestamp: "CHANGE_TIMESTAMP",
  }
}) {
  tableImportJob{
      jobId
      jobStatus
    }
    space{
      id
    }
    validationResult{
      error {
        code
        message
      }
      validationStatus
    }
}
}

Step 2: Query for Table ID

Once the job is created, query for the jobId by running the following query:

query queryTableJobId {
  node(id: "spaceId") {
    ... on Space {
      tableJobs(first: 1){
        edges{
          node{
            id
            jobId
          }
        }
      }
    }
  }
}

Step 3: Trigger a query

After the job is created, trigger a query for data within the specified time range using the following mutation:

mutation TriggerTableRun {
  createTriggeredOngoingTableRun(input: {
    jobId:"<ID from above query>",
    queryStart: "2024-08-20T01:00:00Z", #desired start time for query
    queryEnd: "2024-08-20T23:00:00Z", #desired end time for query
  }) {
    clientMutationId
  }
}

Deleting Import Jobs

Delete an import job by using the deleteTableImportJob mutation and job ID.

mutation {
  deleteTableImportJob(input: {jobId: "ID"}) {
    tableImportJob {
      jobStatus
    }
  }
}

Updating Table Ingestion Parameters

mutation {
  updateTableIngestionParameters(input: {
    jobId: "job_id",
    tableIngestionParameters: {
      refreshIntervalMinutes: 60,
      queryWindowSizeHours: 24
    }
  }) {
    tableImportJob {
      id
    }
  }
}

Updating Table Ingestion Schema

Update the schema used for a table import job using the updateTableImportJob mutation and job ID.

mutation updateTableImportJob(
  $jobId: ID!, 
  $schema: TableImportSchemaInputType!,
  $tableIngestionParameters: TableIngestionParametersInputType!
) {
  updateTableImportJob(input: {
    jobId: $jobId,
    schema: $schema,
    tableIngestionParameters: $tableIngestionParameters
  }) {
   tableImportJob {
      id
    } 
  }
}

Learn how to map your data with each warehouse for , , and . Use the GraphQL docs for a list of all the available fields for a query/mutation.

Update for a job using the updateTableIngestionParameters mutation and job ID.

๐Ÿ“š
introduction
Snowflake
Databricks
BigQuery
Snowflake
Databricks
BigQuery
here
table ingestion parameters