Table Importer API Learn how to create, pause, resume, and delete table import jobs, and update table ingestion parameters programmatically using the GraphQL API.
Use the table importer API to programmatically connect your data warehouse with the Arize platform.
For a brief overview of GraphQL itself, please consult our introduction .
Creating Import Jobs
Import jobs are localized to a Space
. To create an import job, retrieve your space ID from the platform URL:
/organizations/:organization_id/spaces/:space_id .
Import Job Tips:
Create a reusable mutation to easily configure multiple table import jobs
Validate your table import job before you actually create the job with thedryRun
parameter when creating the import job mutation
dryRun(boolean): If true, Arize will attempt the import job with no written changes. Use the validationResult
to check validation status
Dry Run Table Import Job Create Table Import Job Mutation
Copy mutation dryRunTableImportJob ($input: CreateTableImportJobInput ! ) {
createTableImportJob(input: $input) {
validationResult {
validationStatus
error {
message
}
}
}
}
variables:
Copy {
"input" : {
"spaceId" : "space_id" ,
"modelName" : "My Test Model" ,
"modelType" : "score_categorical" ,
"modelEnvironmentName" : "production" ,
"tableStore" : "BigQuery" ,
"bigQueryTableConfig" : {
"projectId" : "test-project-id" ,
"dataset" : "test-dataset" ,
"tableName" : "test-table"
} ,
"schema" : {
"predictionId" : "prediction_id" ,
"predictionLabel" : "prediction" ,
"timestamp" : "prediction_ts" ,
"features" : "feature_" ,
"actualLabel" : "actual" ,
"version" : "model_version" ,
"tags" : "tag_" ,
"changeTimestamp" : "partition_timestamp"
} ,
"dryRun" : true
}
}
Alternatively , you may pass in the inputs directly:
Copy mutation {
createTableImportJob(input: {
spaceId : "space_id" ,
modelName : "My Test Model" ,
modelType : score_categorical,
modelEnvironmentName : production,
tableStore : BigQuery,
bigQueryTableConfig : {
projectId : "test-project-id" ,
dataset : "test-dataset" ,
tableName : "test-table"
},
schema : {
predictionId : "prediction_id" ,
predictionLabel : "prediction" ,
timestamp : "prediction_ts" ,
features : "feature_" ,
actualLabel : "actual" ,
version : "model_version" ,
tags : "tag_" ,
changeTimestamp : "partition_timestamp"
},
dryRun : true
}){
validationResult {
validationStatus
error {
message
}
}
}
}
Copy mutation createTableImportJob ($input: CreateTableImportJobInput ! ) {
createTableImportJob(input: $input) {
tableImportJob {
id
}
}
}
variables
Copy {
"input" : {
"spaceId" : "space_id" ,
"modelName" : "My Test Model" ,
"modelType" : "score_categorical" ,
"modelEnvironmentName" : "production" ,
"tableStore" : "BigQuery" ,
"bigQueryTableConfig" : {
"projectId" : "test-project-id" ,
"dataset" : "test-dataset" ,
"tableName" : "test-table"
} ,
"schema" : {
"predictionId" : "prediction_id" ,
"predictionLabel" : "prediction" ,
"timestamp" : "prediction_ts" ,
"features" : "feature_" ,
"actualLabel" : "actual" ,
"version" : "model_version" ,
"tags" : "tag_" ,
"changeTimestamp" : "partition_timestamp"
}
}
}
Alternatively , you may pass in the inputs directly:
Copy mutation {
createTableImportJob(input: {
spaceId : "space_id" ,
modelName : "My Test Model" ,
modelType : score_categorical,
modelEnvironmentName : production,
tableStore : BigQuery,
bigQueryTableConfig : {
projectId : "test-project-id" ,
dataset : "test-dataset" ,
tableName : "test-table"
},
schema : {
predictionId : "prediction_id" ,
predictionLabel : "prediction" ,
timestamp : "prediction_ts" ,
features : "feature_" ,
actualLabel : "actual" ,
version : "model_version" ,
tags : "tag_" ,
changeTimestamp : "partition_timestamp"
}
}){
tableImportJob {
id
}
}
}
The variables in the example above are for one mapping with BigQuery.
Learn how to map your data with each warehouse for Snowflake , Databricks , and BigQuery . Use the GraphQL docs here for a list of all the available fields for a query/mutation.
Querying for Import Jobs
You can query for table import jobs using a Space
node.
Copy query {
node(id: "space_id" ) {
... on Space {
tableJobs(first: 50 ) {
edges {
node {
id
modelName
jobStatus
totalQueriesFailedCount
totalQueriesSuccessCount
}
}
}
}
}
}
If you have a large number of import jobs, use pagination for the complete list to view or use in your queries/mutations.
Query for fields directly from a specific import job using the TableImportJob
node and ID
.
To view the queries for a given import job, use the TableImportJobQueryConnection
that returns the total number of queries and information on the individual queries.
Copy query {
node(id: "ID" ) {
... on TableImportJob {
queries(first: 10 ) {
totalCount
edges{
node {
queryId
createdAt
recordsProcessedCount
windowStartTimestamp
windowEndTimestamp
}
}
}
}
}
}
Pausing Import Jobs
Pause an existing table import job with the pauseTableImportJob
mutation and jobID
.
Copy mutation {
pauseTableImportJob(input: { jobId : "ID" }) {
tableImportJob {
jobStatus
}
}
}
Resuming Import Jobs
Resume a paused import job by using the startTableImportJob
mutation and job ID
.
Copy mutation {
startTableImportJob(input: { jobId : "ID" }) {
tableImportJob {
jobStatus
}
}
}
Event-Based Table Import Jobs
Available for Snowflake only.
If you are connecting to a warehouse or table for the first time, please complete the one-time permissions setup. For assistance, contact support@arize.com.
Step 1: Create Table Job
To enable event-driven ingestion, set up the table connection and initialize the job by running the following mutation:
Copy mutation CreateTableJob {
createTriggeredOngoingTableImportJob(input: {
spaceId : "space_id" ,
modelName : "model-name" ,
modelType : score_categorical,
modelEnvironmentName : production,
tableStore : Snowflake,
snowflakeTableConfig : {
accountID : "snowflake-account-id" ,
schema : "snowflake-schema" ,
database : "database-name" ,
tableName : "table-name"
},
schema : {
predictionId : "PRED_ID" ,
predictionLabel : "PRED_LABEL"
timestamp : "TIMESTAMP" ,
featuresList : [],
tagsList : [],
changeTimestamp : "CHANGE_TIMESTAMP" ,
}
}) {
tableImportJob{
jobId
jobStatus
}
space{
id
}
validationResult{
error {
code
message
}
validationStatus
}
}
}
Step 2: Query for Table ID
Once the job is created, query for the jobId
by running the following query:
Copy query queryTableJobId {
node(id: "spaceId" ) {
... on Space {
tableJobs(first: 1 ){
edges{
node{
id
jobId
}
}
}
}
}
}
Step 3: Trigger a query
After the job is created, trigger a query for data within the specified time range using the following mutation:
Copy mutation TriggerTableRun {
createTriggeredOngoingTableRun(input: {
jobId : "<ID from above query>" ,
queryStart : "2024-08-20T01:00:00Z" , #desired start time for query
queryEnd : "2024-08-20T23:00:00Z" , #desired end time for query
}) {
clientMutationId
}
}
Deleting Import Jobs
Delete an import job by using the deleteTableImportJob
mutation and job ID
.
Copy mutation {
deleteTableImportJob(input: { jobId : "ID" }) {
tableImportJob {
jobStatus
}
}
}
Updating Table Ingestion Parameters
Update table ingestion parameters for a job using the updateTableIngestionParameters
mutation and job ID
.
Copy mutation {
updateTableIngestionParameters(input: {
jobId : "job_id" ,
tableIngestionParameters : {
rowLimit : 50000 ,
refreshIntervalMinutes : 60 ,
queryWindowSizeHours : 24
}
}) {
tableImportJob {
id
}
}
}
Updating Table Ingestion Schema
Update the schema used for a table import job using the updateTableImportJob
mutation and job ID
.
Copy mutation updateTableImportJob (
$jobId: ID ! ,
$schema: TableImportSchemaInputType ! ,
$tableIngestionParameters: TableIngestionParametersInputType !
) {
updateTableImportJob(input: {
jobId : $jobId,
schema : $schema,
tableIngestionParameters : $tableIngestionParameters
}) {
tableImportJob {
id
}
}
}
Last updated 3 months ago