Client$log()

Batch Logging - Designed for sending batches of data to Arize

Overview

The Client$log() is designed for training, validation or production environment where batches of data are processed. These environments may be either a R Studio Notebook or a R server that is batch processing lots of backend data.

Import and initialize Arize R client from the Arize Client$new() to call Client$log() with a R data.frame() containing inference data.

Initializing Client Examples

ORGANIZATION_KEY <- 'ORGANIZATION_KEY'
API_KEY <- 'API_KEY'
arize_client <- Client$new(
    organization_key = ORGANIZATION_KEY, 
    api_key = API_KEY)

Parameters & Returns

schema <- create_schema(
  prediction_id_column_name = "prediction_id",
  prediction_label_column_name = "prediction_label",
  prediction_score_column_name = "prediction_score",
  actual_label_column_name = "actual_label",
  actual_score_column_name = "actual_score",
  feature_column_names = features,
  timestamp_column_name = "prediction_ts"
)


# send training data
arize_client$log(
  .data_frame = df_train,
  .schema = schema
  .model_id = model_id,
  .model_version = model_version,
  .model_type = model_types$SCORE_CATEGORICAL,
  .environment = environments$TRAINING,
)
ParameterData TypeDescriptionRequired

.data_frame

data.frame

data.frame to log

Required

.schema

arize::create_schema

the schema

(see ?arize::create_schema)

Required

.model_id

character

character, id for the model

Required

.model_type

integer

1 for binary,

2 for numeric,

3 for categorical,

4 for score-categorical

Required

.environment

environment

1 for production,

2 for validation,

3 for training

Required

.model_version

character

character, the model version

Optional

.batch_id

character

character, the batch id

Optional

.sync

logical

logical, whether to sync

Optional

.validate

logical

logical, whether to run validation checks

Optional

.path

character

character, path to use for serialization

Optional

Schema Attributes

Attribute

Data Type

Description

Required

prediction_id_column_name

character

Column name for prediction_id

Required

feature_column_names

List[character]

List of column names for features

Optional

prediction_label_column_name

character

Column name for prediction label

Optional

prediction_score_column_name

character

Column name for prediction scores

Optional

actual_label_column_name

character

Column name for actual label

Optional

actual_score_column_name

str

Column name for numeric sequences. Used for NDCG calculations in ranking models

Optional

timestamp_column_name

character

Column name for timestamps

Optional

Examples

Check out the Example Tutorial

Example 1: Logging Features, Predictions, & Actuals

model_id <- "click_through_rate_categorical_vignette_R"  # This is the model name that will show up in Arize
model_version <- "v1.0"  # Version of model - can be any string

schema <- create_schema(
  prediction_id_column_name = "id",
  feature_column_names = features,
  prediction_label_column_name = "predictions",
  prediction_score_column_name = "CTR_predicted",
  actual_label_column_name = "actuals",
  actual_score_column_name = "CTR",
  timestamp_column_name = "model_date"
)

arize_client$log(
  .data_frame = df_train,
  .model_id = model_id,
  .model_version = model_version,
  .model_type = model_types$SCORE_CATEGORICAL,
  .environment = environments$TRAINING,
  .schema = schema
)

Last updated

Copyright © 2023 Arize AI, Inc