Client$log()
Batch Logging - Designed for sending batches of data to Arize
Overview
The Client$log() is designed for training, validation or production environment where batches of data are processed. These environments may be either a R Studio Notebook or a R server that is batch processing lots of backend data.
Import and initialize Arize R client from the Arize Client$new()
to call Client$log()
with a R data.frame() containing inference data.
Initializing Client Examples
Parameters & Returns
Parameter | Data Type | Description | Required |
---|---|---|---|
.data_frame | data.frame | data.frame to log | Required |
.schema | arize::create_schema | the schema (see | Required |
.model_id | character | character, id for the model | Required |
.model_type | integer |
| Required |
.environment | environment |
| Required |
.model_version | character | character, the model version | Optional |
.batch_id | character | character, the batch id | Optional |
.sync | logical | logical, whether to sync | Optional |
.validate | logical | logical, whether to run validation checks | Optional |
.path | character | character, path to use for serialization | Optional |
Schema Attributes
Attribute | Data Type | Description | Required |
prediction_id_column_name | character | Column name for prediction_id | Required |
feature_column_names | List[character] | List of column names for features | Optional |
prediction_label_column_name | character | Column name for prediction label | Optional |
prediction_score_column_name | character | Column name for prediction scores | Optional |
actual_label_column_name | character | Column name for actual label | Optional |
actual_score_column_name | str | Column name for numeric sequences. Used for NDCG calculations in ranking models | Optional |
timestamp_column_name | character | Column name for timestamps | Optional |
Examples
Check out the Example Tutorial
Example 1: Logging Features, Predictions, & Actuals
Last updated