Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
English
  • Documentation
  • Self-Hosting
  • Cookbooks
  • SDK and API Reference
  • Release Notes
  • Resources
English
  • Arize Phoenix
  • Quickstarts
  • User Guide
  • Environments
  • Phoenix Demo
  • 🔭Tracing
    • Overview: Tracing
    • Quickstart: Tracing
      • Quickstart: Tracing (Python)
      • Quickstart: Tracing (TS)
    • Features: Tracing
      • Projects
      • Annotations
      • Sessions
    • Integrations: Tracing
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • LiteLLM
      • Anthropic
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • VertexAI
      • Model Context Protocol (MCP)
      • MistralAI
      • Google GenAI
      • Groq
      • Hugging Face smolagents
      • CrewAI
      • Haystack
      • DSPy
      • Instructor
      • OpenAI Node SDK
      • LangChain.js
      • Vercel AI SDK
      • LangFlow
      • BeeAI
      • Flowise
    • How-to: Tracing
      • Setup Tracing
        • Setup using Phoenix OTEL
        • Setup using base OTEL
        • Using Phoenix Decorators
        • Setup Tracing (TS)
        • Setup Projects
        • Setup Sessions
      • Add Metadata
        • Add Attributes, Metadata, Users
        • Instrument Prompt Templates and Prompt Variables
      • Annotate Traces
        • Annotating in the UI
        • Annotating via the Client
        • Running Evals on Traces
        • Log Evaluation Results
      • Importing & Exporting Traces
        • Import Existing Traces
        • Export Data & Query Spans
        • Exporting Annotated Spans
      • Advanced
        • Mask Span Attributes
        • Suppress Tracing
        • Filter Spans to Export
        • Capture Multimodal Traces
    • Concepts: Tracing
      • How Tracing Works
      • What are Traces
      • Concepts: Annotations
      • FAQs: Tracing
  • 📃Prompt Engineering
    • Overview: Prompts
      • Prompt Management
      • Prompt Playground
      • Span Replay
      • Prompts in Code
    • Quickstart: Prompts
      • Quickstart: Prompts (UI)
      • Quickstart: Prompts (Python)
      • Quickstart: Prompts (TS)
    • How to: Prompts
      • Configure AI Providers
      • Using the Playground
      • Create a prompt
      • Test a prompt
      • Tag a prompt
      • Using a prompt
    • Concepts: Prompts
  • 🗄️Datasets & Experiments
    • Overview: Datasets & Experiments
    • Quickstart: Datasets & Experiments
    • How-to: Datasets
      • Creating Datasets
      • Exporting Datasets
    • Concepts: Datasets
    • How-to: Experiments
      • Run Experiments
      • Using Evaluators
  • 🧠Evaluation
    • Overview: Evals
      • Agent Evaluation
    • Quickstart: Evals
    • How to: Evals
      • Pre-Built Evals
        • Hallucinations
        • Q&A on Retrieved Data
        • Retrieval (RAG) Relevance
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Reference (citation) Link
        • User Frustration
        • SQL Generation Eval
        • Agent Function Calling Eval
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Audio Emotion Detection
      • Eval Models
      • Build an Eval
      • Build a Multimodal Eval
      • Online Evals
      • Evals API Reference
    • Concepts: Evals
      • LLM as a Judge
      • Eval Data Types
      • Evals With Explanations
      • Evaluators
      • Custom Task Evaluation
  • 🔍Retrieval
    • Overview: Retrieval
    • Quickstart: Retrieval
    • Concepts: Retrieval
      • Retrieval with Embeddings
      • Benchmarking Retrieval
      • Retrieval Evals on Document Chunks
  • 🌌inferences
    • Quickstart: Inferences
    • How-to: Inferences
      • Import Your Data
        • Prompt and Response (LLM)
        • Retrieval (RAG)
        • Corpus Data
      • Export Data
      • Generate Embeddings
      • Manage the App
      • Use Example Inferences
    • Concepts: Inferences
    • API: Inferences
    • Use-Cases: Inferences
      • Embeddings Analysis
  • 🔌INTEGRATIONS
    • Phoenix MCP Server
    • Cleanlab
    • Ragas
  • ⚙️Settings
    • Access Control (RBAC)
    • API Keys
    • Data Retention
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page
  • Configuring Annotations
  • Adding Annotations
  • Viewing Annotations
  • Exporting Traces with specific Annotation Values

Was this helpful?

Edit on GitHub
  1. Tracing
  2. How-to: Tracing
  3. Annotate Traces

Annotating in the UI

How to annotate traces in the UI for analysis and dataset curation

PreviousAnnotate TracesNextAnnotating via the Client

Last updated 4 days ago

Was this helpful?

Configuring Annotations

To annotate data in the UI, you first will want to setup a rubric for how to annotate. Navigate to Settings and create annotation configs (e.g. a rubric) for your data. You can create various different types of annotations: Categorical, Continuous, and Freeform.

Annotation Types
  • annotation type: - Categorical: Predefined labels for selection. (e.x. 👍 or 👎) - Continuous: a score across a specified range. (e.g. confidence score 0-100) - Freeform: Open-ended text comments. (e.g. "correct")

  • Optimize the direction based on your goal: - Maximize: higher scores are better. (e.g. confidence) - Minimize: lower scores are better. (e.g. hallucinations) - None: direction optimization does not apply. (e.g. tone)

Different types of annotations change the way human annotators provide feedback
Configure an annotation to guide how a user should input an annotation

Adding Annotations

Once you have annotations configured, you can associate annotations to the data that you have traced. Click on the Annotate button and fill out the form to rate different steps in your AI application. You can also take notes as you go by either clicking on the explain link or by adding your notes to the bottom messages UI. You can always come back and edit / and delete your annotations. Annotations can be deleted from the table view under the Annotations tab.

Once an annotation has been provided, you can also add a reason to explain why this particular label or score was provided. This is useful to add additional context to the annotation.

Viewing Annotations

As annotations come in from various sources (annotators, evals), the entire list of annotations can be found under the Annotations tab. Here you can see the author, the annotator kind (e.g. was the annotation performed by a human, llm, or code), and so on. This can be particularly useful if you want to see if different annotators disagree.

Exporting Traces with specific Annotation Values

Once you have collected feedback in the form of annotations, you can filter your traces by the annotation values to narrow down to interesting samples (e.x. llm spans that are incorrect). Once filtered down to a sample of spans, you can export your selection to a dataset, which in turn can be used for things like experimentation, fine-tuning, or building a human-aligned eval.

Once annotations are configured, you can add them to your project to build out a custom annotation form
You can view the annotations by different users, llms, and annotators
Narrow down your data to areas that need more attention or refinement
🔭