Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
English
  • Documentation
  • Self-Hosting
  • Cookbooks
  • Learn
  • Integrations
  • SDK and API Reference
  • Release Notes
English
  • Arize Phoenix
  • Quickstarts
  • User Guide
  • Environments
  • Phoenix Demo
  • 🔭Tracing
    • Overview: Tracing
    • Quickstart: Tracing
      • Quickstart: Tracing (Python)
      • Quickstart: Tracing (TS)
    • Features: Tracing
      • Projects
      • Annotations
      • Sessions
    • Integrations: Tracing
    • How-to: Tracing
      • Setup Tracing
        • Setup using Phoenix OTEL
        • Setup using base OTEL
        • Using Phoenix Decorators
        • Setup Tracing (TS)
        • Setup Projects
        • Setup Sessions
      • Add Metadata
        • Add Attributes, Metadata, Users
        • Instrument Prompt Templates and Prompt Variables
      • Annotate Traces
        • Annotating in the UI
        • Annotating via the Client
        • Running Evals on Traces
        • Log Evaluation Results
      • Importing & Exporting Traces
        • Import Existing Traces
        • Export Data & Query Spans
        • Exporting Annotated Spans
      • Advanced
        • Mask Span Attributes
        • Suppress Tracing
        • Filter Spans to Export
        • Capture Multimodal Traces
    • Concepts: Tracing
      • How Tracing Works
      • What are Traces
      • Concepts: Annotations
      • FAQs: Tracing
  • 📃Prompt Engineering
    • Overview: Prompts
      • Prompt Management
      • Prompt Playground
      • Span Replay
      • Prompts in Code
    • Quickstart: Prompts
      • Quickstart: Prompts (UI)
      • Quickstart: Prompts (Python)
      • Quickstart: Prompts (TS)
    • How to: Prompts
      • Configure AI Providers
      • Using the Playground
      • Create a prompt
      • Test a prompt
      • Tag a prompt
      • Using a prompt
    • Concepts: Prompts
  • 🗄️Datasets & Experiments
    • Overview: Datasets & Experiments
    • Quickstart: Datasets & Experiments
    • How-to: Datasets
      • Creating Datasets
      • Exporting Datasets
    • Concepts: Datasets
    • How-to: Experiments
      • Run Experiments
      • Using Evaluators
  • 🧠Evaluation
    • Overview: Evals
      • Agent Evaluation
    • Quickstart: Evals
    • How to: Evals
      • Pre-Built Evals
        • Hallucinations
        • Q&A on Retrieved Data
        • Retrieval (RAG) Relevance
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Reference (citation) Link
        • User Frustration
        • SQL Generation Eval
        • Agent Function Calling Eval
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Audio Emotion Detection
      • Eval Models
      • Build an Eval
      • Build a Multimodal Eval
      • Online Evals
      • Evals API Reference
    • Concepts: Evals
      • LLM as a Judge
      • Eval Data Types
      • Evals With Explanations
      • Evaluators
      • Custom Task Evaluation
  • 🔍Retrieval
    • Overview: Retrieval
    • Quickstart: Retrieval
    • Concepts: Retrieval
      • Retrieval with Embeddings
      • Benchmarking Retrieval
      • Retrieval Evals on Document Chunks
  • 🌌inferences
    • Quickstart: Inferences
    • How-to: Inferences
      • Import Your Data
        • Prompt and Response (LLM)
        • Retrieval (RAG)
        • Corpus Data
      • Export Data
      • Generate Embeddings
      • Manage the App
      • Use Example Inferences
    • Concepts: Inferences
    • API: Inferences
    • Use-Cases: Inferences
      • Embeddings Analysis
  • ⚙️Settings
    • Access Control (RBAC)
    • API Keys
    • Data Retention
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page
  • Define Your Inferences
  • Launch the App
  • Open the UI
  • Close the App

Was this helpful?

Edit on GitHub
  1. inferences
  2. How-to: Inferences

Manage the App

How to define your inference set(s), launch a session, open the UI in your notebook or browser, and close your session when you're done

PreviousGenerate EmbeddingsNextUse Example Inferences

Last updated 1 year ago

Was this helpful?

Define Your Inferences

For a conceptual overview of inferences, including an explanation of when to use a single inference vs. primary and reference inferences, see .

To define inferences, you must load your data into a pandas dataframe and . If you have a dataframe prim_df and a matching prim_schema, you can define inferences named "primary" with

prim_ds = px.Inferences(prim_df, prim_schema, "primary")

If you additionally have a dataframe ref_df and a matching ref_schema, you can define a inference set named "reference" with

ref_ds = px.Inferences(ref_df, ref_schema, "reference")

See if you have corpus data for an Information Retrieval use case.

Launch the App

Use phoenix.launch_app to start your Phoenix session in the background. You can launch Phoenix with zero, one, or two inference sets.

Open the UI

You can view and interact with the Phoenix UI either directly in your notebook or in a separate browser tab or window.

In a notebook cell, run

session.url

Copy and paste the output URL into a new browser tab or window.

Browser-based sessions are supported in both local Jupyter environments and Colab.

In a notebook cell, run

session.view()

The Phoenix UI will appear in an inline frame in the cell output.

The height of the window can be adjusted by passing a height parameter, e.g., session.view(height=1200). Defaults to 1000 pixels.

Close the App

When you're done using Phoenix, gracefully shut down your running background session with

px.close_app()
🌌

No Inferences

session = px.launch_app()
  • Run Phoenix in the background to collect OpenInference traces emitted by your instrumented LLM application.

Single Inference Set

session = px.launch_app(ds)
  • Analyze a single cohort of data, e.g., only training data.

  • Check model performance and data quality, but not drift.

Primary and Reference Inference Sets

session = px.launch_app(prim_ds, ref_ds)
  • Compare cohorts of data, e.g., training vs. production.

  • Analyze drift in addition to model performance and data quality.

session = px.launch_app(query_ds, corpus=corpus_ds)
  • Compare a query inference set to a corpus dataset to analyze your retrieval-augmented generation applications.

create a matching schema
Corpus Data

Primary and Inference Sets

Corpus
Phoenix Basics