Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
English
  • Documentation
  • Self-Hosting
  • Cookbooks
  • Learn
  • Integrations
  • SDK and API Reference
  • Release Notes
English
  • Arize Phoenix
  • Quickstarts
  • User Guide
  • Environments
  • Phoenix Demo
  • 🔭Tracing
    • Overview: Tracing
    • Quickstart: Tracing
      • Quickstart: Tracing (Python)
      • Quickstart: Tracing (TS)
    • Features: Tracing
      • Projects
      • Annotations
      • Sessions
    • Integrations: Tracing
    • How-to: Tracing
      • Setup Tracing
        • Setup using Phoenix OTEL
        • Setup using base OTEL
        • Using Phoenix Decorators
        • Setup Tracing (TS)
        • Setup Projects
        • Setup Sessions
      • Add Metadata
        • Add Attributes, Metadata, Users
        • Instrument Prompt Templates and Prompt Variables
      • Annotate Traces
        • Annotating in the UI
        • Annotating via the Client
        • Running Evals on Traces
        • Log Evaluation Results
      • Importing & Exporting Traces
        • Import Existing Traces
        • Export Data & Query Spans
        • Exporting Annotated Spans
      • Advanced
        • Mask Span Attributes
        • Suppress Tracing
        • Filter Spans to Export
        • Capture Multimodal Traces
    • Concepts: Tracing
      • How Tracing Works
      • What are Traces
      • Concepts: Annotations
      • FAQs: Tracing
  • 📃Prompt Engineering
    • Overview: Prompts
      • Prompt Management
      • Prompt Playground
      • Span Replay
      • Prompts in Code
    • Quickstart: Prompts
      • Quickstart: Prompts (UI)
      • Quickstart: Prompts (Python)
      • Quickstart: Prompts (TS)
    • How to: Prompts
      • Configure AI Providers
      • Using the Playground
      • Create a prompt
      • Test a prompt
      • Tag a prompt
      • Using a prompt
    • Concepts: Prompts
  • 🗄️Datasets & Experiments
    • Overview: Datasets & Experiments
    • Quickstart: Datasets & Experiments
    • How-to: Datasets
      • Creating Datasets
      • Exporting Datasets
    • Concepts: Datasets
    • How-to: Experiments
      • Run Experiments
      • Using Evaluators
  • 🧠Evaluation
    • Overview: Evals
      • Agent Evaluation
    • Quickstart: Evals
    • How to: Evals
      • Pre-Built Evals
        • Hallucinations
        • Q&A on Retrieved Data
        • Retrieval (RAG) Relevance
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Reference (citation) Link
        • User Frustration
        • SQL Generation Eval
        • Agent Function Calling Eval
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Audio Emotion Detection
      • Eval Models
      • Build an Eval
      • Build a Multimodal Eval
      • Online Evals
      • Evals API Reference
    • Concepts: Evals
      • LLM as a Judge
      • Eval Data Types
      • Evals With Explanations
      • Evaluators
      • Custom Task Evaluation
  • 🔍Retrieval
    • Overview: Retrieval
    • Quickstart: Retrieval
    • Concepts: Retrieval
      • Retrieval with Embeddings
      • Benchmarking Retrieval
      • Retrieval Evals on Document Chunks
  • 🌌inferences
    • Quickstart: Inferences
    • How-to: Inferences
      • Import Your Data
        • Prompt and Response (LLM)
        • Retrieval (RAG)
        • Corpus Data
      • Export Data
      • Generate Embeddings
      • Manage the App
      • Use Example Inferences
    • Concepts: Inferences
    • API: Inferences
    • Use-Cases: Inferences
      • Embeddings Analysis
  • ⚙️Settings
    • Access Control (RBAC)
    • API Keys
    • Data Retention
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page
  • To view images in Phoenix
  • Example

Was this helpful?

Edit on GitHub
  1. Tracing
  2. How-to: Tracing
  3. Advanced

Capture Multimodal Traces

PreviousFilter Spans to ExportNextConcepts: Tracing

Last updated 8 months ago

Was this helpful?

Phoenix supports displaying images that are included in LLM traces.

To view images in Phoenix

  1. Include either a base64 UTF-8 encoded image or an image url in the call made to your LLM

Example

pip install -q "arize-phoenix>=4.29.0" openinference-instrumentation-openai openai
# Check if PHOENIX_API_KEY is present in the environment variables.
# If it is, we'll use the cloud instance of Phoenix. If it's not, we'll start a local instance.
# A third option is to connect to a docker or locally hosted instance.
# See https://docs.arize.com/phoenix/setup/environments for more information.

# Launch Phoenix
import os
if "PHOENIX_API_KEY" in os.environ:
    os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={os.environ['PHOENIX_API_KEY']}"
    os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

else:
    import phoenix as px

    px.launch_app().view()

# Connect to Phoenix
from phoenix.otel import register
tracer_provider = register()

# Instrument OpenAI calls in your application
from openinference.instrumentation.openai import OpenAIInstrumentor
OpenAIInstrumentor().instrument(tracer_provider=tracer_provider, skip_dep_check=True)

# Make a call to OpenAI with an image provided
from openai import OpenAI

client = OpenAI()

response = client.chat.completions.create(
  model="gpt-4o",
  messages=[
    {
      "role": "user",
      "content": [
        {"type": "text", "text": "What’s in this image?"},
        {
          "type": "image_url",
          "image_url": {
            "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
          },
        },
      ],
    }
  ],
  max_tokens=300,
)

You should see your image appear in Phoenix:

🔭
Connect to a Phoenix instance
Instrument your application