Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
English
  • Documentation
  • Self-Hosting
  • Cookbooks
  • Learn
  • Integrations
  • SDK and API Reference
  • Release Notes
English
  • Arize Phoenix
  • Quickstarts
  • User Guide
  • Environments
  • Phoenix Demo
  • 🔭Tracing
    • Overview: Tracing
    • Quickstart: Tracing
      • Quickstart: Tracing (Python)
      • Quickstart: Tracing (TS)
    • Features: Tracing
      • Projects
      • Annotations
      • Sessions
    • Integrations: Tracing
    • How-to: Tracing
      • Setup Tracing
        • Setup using Phoenix OTEL
        • Setup using base OTEL
        • Using Phoenix Decorators
        • Setup Tracing (TS)
        • Setup Projects
        • Setup Sessions
      • Add Metadata
        • Add Attributes, Metadata, Users
        • Instrument Prompt Templates and Prompt Variables
      • Annotate Traces
        • Annotating in the UI
        • Annotating via the Client
        • Running Evals on Traces
        • Log Evaluation Results
      • Importing & Exporting Traces
        • Import Existing Traces
        • Export Data & Query Spans
        • Exporting Annotated Spans
      • Advanced
        • Mask Span Attributes
        • Suppress Tracing
        • Filter Spans to Export
        • Capture Multimodal Traces
    • Concepts: Tracing
      • How Tracing Works
      • What are Traces
      • Concepts: Annotations
      • FAQs: Tracing
  • 📃Prompt Engineering
    • Overview: Prompts
      • Prompt Management
      • Prompt Playground
      • Span Replay
      • Prompts in Code
    • Quickstart: Prompts
      • Quickstart: Prompts (UI)
      • Quickstart: Prompts (Python)
      • Quickstart: Prompts (TS)
    • How to: Prompts
      • Configure AI Providers
      • Using the Playground
      • Create a prompt
      • Test a prompt
      • Tag a prompt
      • Using a prompt
    • Concepts: Prompts
  • 🗄️Datasets & Experiments
    • Overview: Datasets & Experiments
    • Quickstart: Datasets & Experiments
    • How-to: Datasets
      • Creating Datasets
      • Exporting Datasets
    • Concepts: Datasets
    • How-to: Experiments
      • Run Experiments
      • Using Evaluators
  • 🧠Evaluation
    • Overview: Evals
      • Agent Evaluation
    • Quickstart: Evals
    • How to: Evals
      • Pre-Built Evals
        • Hallucinations
        • Q&A on Retrieved Data
        • Retrieval (RAG) Relevance
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Reference (citation) Link
        • User Frustration
        • SQL Generation Eval
        • Agent Function Calling Eval
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Audio Emotion Detection
      • Eval Models
      • Build an Eval
      • Build a Multimodal Eval
      • Online Evals
      • Evals API Reference
    • Concepts: Evals
      • LLM as a Judge
      • Eval Data Types
      • Evals With Explanations
      • Evaluators
      • Custom Task Evaluation
  • 🔍Retrieval
    • Overview: Retrieval
    • Quickstart: Retrieval
    • Concepts: Retrieval
      • Retrieval with Embeddings
      • Benchmarking Retrieval
      • Retrieval Evals on Document Chunks
  • 🌌inferences
    • Quickstart: Inferences
    • How-to: Inferences
      • Import Your Data
        • Prompt and Response (LLM)
        • Retrieval (RAG)
        • Corpus Data
      • Export Data
      • Generate Embeddings
      • Manage the App
      • Use Example Inferences
    • Concepts: Inferences
    • API: Inferences
    • Use-Cases: Inferences
      • Embeddings Analysis
  • ⚙️Settings
    • Access Control (RBAC)
    • API Keys
    • Data Retention
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page

Was this helpful?

Edit on GitHub
  1. Tracing

Overview: Tracing

Tracing the execution of LLM applications using Telemetry

PreviousEnvironmentsNextQuickstart: Tracing

Last updated 24 days ago

Was this helpful?

Phoenix traces AI applications, via OpenTelemetry and has first-class integrations with LlamaIndex, Langchain, OpenAI, and others.

LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application. For example, when a user interacts with an LLM application, tracing can capture the sequence of operations, such as document retrieval, embedding generation, language model invocation, and response generation to provide a detailed timeline of the request's execution.

Tracing is a helpful tool for understanding how your LLM application works. Phoenix offers comprehensive tracing capabilities that are not tied to any specific LLM vendor or framework. Phoenix accepts traces over the OpenTelemetry protocol (OTLP) and supports first-class instrumentation for a variety of frameworks ( , ,), SDKs (, , , ), and Languages. (Python, Javascript, etc.)

View the inner workings for your LLM Application

Using Phoenix's tracing capabilities can provide important insights into the inner workings of your LLM application. By analyzing the collected trace data, you can identify and address various performance and operational issues and improve the overall reliability and efficiency of your system.

  • Application Latency: Identify and address slow invocations of LLMs, Retrievers, and other components within your application, enabling you to optimize performance and responsiveness.

  • Token Usage: Gain a detailed breakdown of token usage for your LLM calls, allowing you to identify and optimize the most expensive LLM invocations.

  • Runtime Exceptions: Capture and inspect critical runtime exceptions, such as rate-limiting events, that can help you proactively address and mitigate potential issues.

  • Retrieved Documents: Inspect the documents retrieved during a Retriever call, including the score and order in which they were returned to provide insight into the retrieval process.

  • Embeddings: Examine the embedding text used for retrieval and the underlying embedding model to allow you to validate and refine your embedding strategies.

  • LLM Parameters: Inspect the parameters used when calling an LLM, such as temperature and system prompts, to ensure optimal configuration and debugging.

  • Prompt Templates: Understand the prompt templates used during the prompting step and the variables that were applied, allowing you to fine-tune and improve your prompting strategies.

  • Tool Descriptions: View the descriptions and function signatures of the tools your LLM has been given access to in order to better understand and control your LLM’s capabilities.

  • LLM Function Calls: For LLMs with function call capabilities (e.g., OpenAI), you can inspect the function selection and function messages in the input to the LLM, further improving your ability to debug and optimize your application.

By using tracing in Phoenix, you can gain increased visibility into your LLM application, empowering you to identify and address performance bottlenecks, optimize resource utilization, and ensure the overall reliability and effectiveness of your system.

Next steps

To get started, check out the .

Read more about and

Check out the for specific tutorials.

🔭
Quickstart guide
How-To Guides
what traces are
how traces work
.
LlamaIndex
LangChain
DSPy
OpenAI
Bedrock
Mistral
Vertex