MistralAI

Instrument LLM calls made using MistralAI's SDK via the MistralAIInstrumentor

MistralAI is a leading provider for state-of-the-art LLMs. The MistralAI SDK can be instrumented using the openinference-instrumentation-mistralai package.

Launch Phoenix

Sign up for Phoenix:

Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login

Install packages:

pip install arize-phoenix-otel

Connect your application to your cloud instance:

import os
from phoenix.otel import register

# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
) 

Your Phoenix API key can be found on the Keys section of your dashboard.

Install

pip install openinference-instrumentation-mistralai mistralai

Setup

Set the MISTRAL_API_KEY environment variable to authenticate calls made using the SDK.

export MISTRAL_API_KEY=[your_key_here]

Initialize the MistralAIInstrumentor before your application code.

from openinference.instrumentation.mistralai import MistralAIInstrumentor

MistralAIInstrumentor().instrument(tracer_provider=tracer_provider)

Run Mistral

import os

from mistralai import Mistral
from mistralai.models import UserMessage

api_key = os.environ["MISTRAL_API_KEY"]
model = "mistral-tiny"

client = Mistral(api_key=api_key)

chat_response = client.chat.complete(
    model=model,
    messages=[UserMessage(content="What is the best French cheese?")],
)
print(chat_response.choices[0].message.content)

Observe

Now that you have tracing setup, all invocations of Mistral (completions, chat completions, embeddings) will be streamed to your running Phoenix for observability and evaluation.

Resources

Last updated