MistralAI

Instrument LLM calls made using MistralAI's SDK via the MistralAIInstrumentor

MistralAI is a leading provider for state-of-the-art LLMs. The MistralAI SDK can be instrumented using the openinference-instrumentation-mistralai package.

Launch Phoenix

Sign up for Phoenix:

Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login

Install packages:

pip install arize-phoenix-otel

Connect your application to your cloud instance:

import os
from phoenix.otel import register

# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
) 

Your Phoenix API key can be found on the Keys section of your dashboard.

Install

pip install openinference-instrumentation-mistralai mistralai

Setup

Set the MISTRAL_API_KEY environment variable to authenticate calls made using the SDK.

export MISTRAL_API_KEY=[your_key_here]

Initialize the MistralAIInstrumentor before your application code.

from openinference.instrumentation.mistralai import MistralAIInstrumentor

MistralAIInstrumentor().instrument(tracer_provider=tracer_provider)

Run Mistral

import os

from mistralai import Mistral
from mistralai.models import UserMessage

api_key = os.environ["MISTRAL_API_KEY"]
model = "mistral-tiny"

client = Mistral(api_key=api_key)

chat_response = client.chat.complete(
    model=model,
    messages=[UserMessage(content="What is the best French cheese?")],
)
print(chat_response.choices[0].message.content)

Observe

Now that you have tracing setup, all invocations of Mistral (completions, chat completions, embeddings) will be streamed to your running Phoenix for observability and evaluation.

Resources

Last updated

Was this helpful?