Anthropic

Instrument LLM calls made using Anthropic's SDK

Anthropic is a leading provider for state-of-the-art LLMs. The Anthropic SDK can be instrumented using the openinference-instrumentation-anthropic package.

Install packages:

pip install arize-phoenix

Launch Phoenix:

import phoenix as px
px.launch_app()

Connect your notebook to Phoenix:

from phoenix.otel import register

tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
)  

By default, notebook instances do not have persistent storage, so your traces will disappear after the notebook is closed. See Persistence or use one of the other deployment options to retain traces.

Install

pip install openinference-instrumentation-anthropic anthropic 

Setup

Initialize the AnthropicInstrumentor before your application code.

from openinference.instrumentation.anthropic import AnthropicInstrumentor

AnthropicInstrumentor().instrument(tracer_provider=tracer_provider)

Run Anthropic

A simple Anthropic application that is now instrumented

import anthropic

client = anthropic.Anthropic()

message = client.messages.create(
    model="claude-3-5-sonnet-20240620",
    max_tokens=1000,
    temperature=0,
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Why is the ocean salty?"
                }
            ]
        }
    ]
)
print(message.content)

Observe

Now that you have tracing setup, all invocations of pipelines will be streamed to your running Phoenix for observability and evaluation.

Resources:

Last updated