Anthropic

Instrument LLM calls made using Anthropic's SDK

Anthropic is a leading provider for state-of-the-art LLMs. The Anthropic SDK can be instrumented using the openinference-instrumentation-anthropic package.

Sign up for Phoenix:

Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login

Install packages:

pip install arize-phoenix-otel

Connect your application to your cloud instance:

import os
from phoenix.otel import register

# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
) 

Your Phoenix API key can be found on the Keys section of your dashboard.

Install

pip install openinference-instrumentation-anthropic anthropic

Setup

Initialize the AnthropicInstrumentor before your application code.

from openinference.instrumentation.anthropic import AnthropicInstrumentor

AnthropicInstrumentor().instrument(tracer_provider=tracer_provider)

Run Anthropic

A simple Anthropic application that is now instrumented

import anthropic

client = anthropic.Anthropic()

message = client.messages.create(
    model="claude-3-5-sonnet-20240620",
    max_tokens=1000,
    temperature=0,
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Why is the ocean salty?"
                }
            ]
        }
    ]
)
print(message.content)

Observe

Now that you have tracing setup, all invocations of pipelines will be streamed to your running Phoenix for observability and evaluation.

Resources:

Last updated