Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
English
  • Documentation
  • Self-Hosting
  • Cookbooks
  • SDK and API Reference
  • Release Notes
  • Resources
English
  • Arize Phoenix
  • Quickstarts
  • User Guide
  • Environments
  • Phoenix Demo
  • 🔭Tracing
    • Overview: Tracing
    • Quickstart: Tracing
      • Quickstart: Tracing (Python)
      • Quickstart: Tracing (TS)
    • Features: Tracing
      • Projects
      • Annotations
      • Sessions
    • Integrations: Tracing
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • LiteLLM
      • Anthropic
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • VertexAI
      • MistralAI
      • Google GenAI
      • Groq
      • Hugging Face smolagents
      • CrewAI
      • Haystack
      • DSPy
      • Instructor
      • OpenAI Node SDK
      • LangChain.js
      • Vercel AI SDK
      • LangFlow
      • BeeAI
      • Flowise
    • How-to: Tracing
      • Setup Tracing
        • Setup using Phoenix OTEL
        • Setup using base OTEL
        • Using Phoenix Decorators
        • Setup Tracing (TS)
        • Setup Projects
        • Setup Sessions
      • Add Metadata
        • Add Attributes, Metadata, Users
        • Instrument Prompt Templates and Prompt Variables
      • Feedback & Annotations
        • Capture Feedback on Traces
        • Evaluating Phoenix Traces
        • Log Evaluation Results
      • Importing & Exporting Traces
        • Import Existing Traces
        • Export Data & Query Spans
      • Advanced
        • Mask Span Attributes
        • Suppress Tracing
        • Filter Spans
        • Capture Multimodal Traces
    • Concepts: Tracing
      • How Tracing Works
      • FAQs: Tracing
      • What are Traces
  • 📃Prompt Engineering
    • Overview: Prompts
      • Prompt Management
      • Prompt Playground
      • Span Replay
      • Prompts in Code
    • Quickstart: Prompts
      • Quickstart: Prompts (UI)
      • Quickstart: Prompts (Python)
      • Quickstart: Prompts (TS)
    • How to: Prompts
      • Configure AI Providers
      • Using the Playground
      • Create a prompt
      • Test a prompt
      • Tag a prompt
      • Using a prompt
    • Concepts: Prompts
  • 🗄️Datasets & Experiments
    • Overview: Datasets & Experiments
    • Quickstart: Datasets & Experiments
    • How-to: Datasets
      • Creating Datasets
      • Exporting Datasets
    • Concepts: Datasets
    • How-to: Experiments
      • Run Experiments
      • Using Evaluators
  • 🧠Evaluation
    • Overview: Evals
      • Agent Evaluation
    • Quickstart: Evals
    • How to: Evals
      • Pre-Built Evals
        • Hallucinations
        • Q&A on Retrieved Data
        • Retrieval (RAG) Relevance
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Reference (citation) Link
        • User Frustration
        • SQL Generation Eval
        • Agent Function Calling Eval
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Audio Emotion Detection
      • Eval Models
      • Build an Eval
      • Build a Multimodal Eval
      • Online Evals
      • Evals API Reference
    • Concepts: Evals
      • LLM as a Judge
      • Eval Data Types
      • Evals With Explanations
      • Evaluators
      • Custom Task Evaluation
  • 🔍Retrieval
    • Overview: Retrieval
    • Quickstart: Retrieval
    • Concepts: Retrieval
      • Retrieval with Embeddings
      • Benchmarking Retrieval
      • Retrieval Evals on Document Chunks
  • 🌌inferences
    • Quickstart: Inferences
    • How-to: Inferences
      • Import Your Data
        • Prompt and Response (LLM)
        • Retrieval (RAG)
        • Corpus Data
      • Export Data
      • Generate Embeddings
      • Manage the App
      • Use Example Inferences
    • Concepts: Inferences
    • API: Inferences
    • Use-Cases: Inferences
      • Embeddings Analysis
  • 🔌INTEGRATIONS
    • Phoenix MCP Server
    • Cleanlab
    • Ragas
  • ⚙️Settings
    • Access Control (RBAC)
    • API Keys
    • Data Retention
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page
  • Launch Phoenix
  • Install
  • Setup
  • Run CrewAI
  • Observe
  • Resources

Was this helpful?

Edit on GitHub
  1. Tracing
  2. Integrations: Tracing

CrewAI

Instrument multi agent applications using CrewAI

PreviousHugging Face smolagentsNextHaystack

Last updated 28 days ago

Was this helpful?

Launch Phoenix

Sign up for Phoenix:

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint and API Key:

import os

# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

Launch your local Phoenix instance:

pip install arize-phoenix
phoenix serve

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"
docker pull arizephoenix/phoenix:latest

Run your containerized instance:

docker run -p 6006:6006 arizephoenix/phoenix:latest

This will expose the Phoenix on localhost:6006

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"

Install packages:

pip install arize-phoenix

Launch Phoenix:

import phoenix as px
px.launch_app()

Install

pip install openinference-instrumentation-crewai crewai crewai-tools

CrewAI uses either Langchain or LiteLLM under the hood to call models, depending on the version.

If you're using CrewAI<0.63.0, we recommend installing our openinference-instrumentation-langchain library to get visibility of LLM calls.

If you're using CrewAI>= 0.63.0, we recommend instead adding our openinference-instrumentation-litellm library to get visibility of LLM calls.

Setup

Connect to your Phoenix instance using the register function.

from phoenix.otel import register

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
  auto_instrument=True # Auto-instrument your app based on installed OI dependencies
)

Run CrewAI

From here, you can run CrewAI as normal

import os
from crewai import Agent, Task, Crew, Process
from crewai_tools import SerperDevTool

os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
os.environ["SERPER_API_KEY"] = "YOUR_SERPER_API_KEY"
search_tool = SerperDevTool()

# Define your agents with roles and goals
researcher = Agent(
  role='Senior Research Analyst',
  goal='Uncover cutting-edge developments in AI and data science',
  backstory="""You work at a leading tech think tank.
  Your expertise lies in identifying emerging trends.
  You have a knack for dissecting complex data and presenting actionable insights.""",
  verbose=True,
  allow_delegation=False,
  # You can pass an optional llm attribute specifying what model you wanna use.
  # llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7),
  tools=[search_tool]
)
writer = Agent(
  role='Tech Content Strategist',
  goal='Craft compelling content on tech advancements',
  backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
  You transform complex concepts into compelling narratives.""",
  verbose=True,
  allow_delegation=True
)

# Create tasks for your agents
task1 = Task(
  description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
  Identify key trends, breakthrough technologies, and potential industry impacts.""",
  expected_output="Full analysis report in bullet points",
  agent=researcher
)

task2 = Task(
  description="""Using the insights provided, develop an engaging blog
  post that highlights the most significant AI advancements.
  Your post should be informative yet accessible, catering to a tech-savvy audience.
  Make it sound cool, avoid complex words so it doesn't sound like AI.""",
  expected_output="Full blog post of at least 4 paragraphs",
  agent=writer
)

# Instantiate your crew with a sequential process
crew = Crew(
  agents=[researcher, writer],
  tasks=[task1, task2],
  verbose=2, # You can set it to 1 or 2 to different logging levels
  process = Process.sequential
)

# Get your crew to work!
result = crew.kickoff()

print("######################")
print(result)

Observe

Now that you have tracing setup, all calls to your Crew will be streamed to your running Phoenix for observability and evaluation.

Resources

Sign up for an Arize Phoenix account at

Your Phoenix API key can be found on the Keys section of your .

For details on customizing a local terminal deployment, see .

See for more details

Pull latest Phoenix image from :

For more info on using Phoenix with Docker, see .

By default, notebook instances do not have persistent storage, so your traces will disappear after the notebook is closed. See or use one of the other deployment options to retain traces.

🔭
https://app.phoenix.arize.com/login
dashboard
Terminal Setup
Docker Hub
Docker
self-hosting
OpenInference package
Example Notebook
Terminal
LogoGoogle Colab