Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
English
  • Documentation
  • Self-Hosting
  • Cookbooks
  • SDK and API Reference
  • Release Notes
  • Resources
English
  • Arize Phoenix
  • Quickstarts
  • User Guide
  • Environments
  • Phoenix Demo
  • 🔭Tracing
    • Overview: Tracing
    • Quickstart: Tracing
      • Quickstart: Tracing (Python)
      • Quickstart: Tracing (TS)
    • Features: Tracing
      • Projects
      • Annotations
      • Sessions
    • Integrations: Tracing
      • OpenAI
      • OpenAI Agents SDK
      • LlamaIndex
      • LlamaIndex Workflows
      • LangChain
      • LangGraph
      • LiteLLM
      • Anthropic
      • Amazon Bedrock
      • Amazon Bedrock Agents
      • VertexAI
      • MistralAI
      • Google GenAI
      • Groq
      • Hugging Face smolagents
      • CrewAI
      • Haystack
      • DSPy
      • Instructor
      • OpenAI Node SDK
      • LangChain.js
      • Vercel AI SDK
      • LangFlow
      • BeeAI
      • Flowise
    • How-to: Tracing
      • Setup Tracing
        • Setup using Phoenix OTEL
        • Setup using base OTEL
        • Using Phoenix Decorators
        • Setup Tracing (TS)
        • Setup Projects
        • Setup Sessions
      • Add Metadata
        • Add Attributes, Metadata, Users
        • Instrument Prompt Templates and Prompt Variables
      • Feedback & Annotations
        • Capture Feedback on Traces
        • Evaluating Phoenix Traces
        • Log Evaluation Results
      • Importing & Exporting Traces
        • Import Existing Traces
        • Export Data & Query Spans
      • Advanced
        • Mask Span Attributes
        • Suppress Tracing
        • Filter Spans
        • Capture Multimodal Traces
    • Concepts: Tracing
      • How Tracing Works
      • FAQs: Tracing
      • What are Traces
  • 📃Prompt Engineering
    • Overview: Prompts
      • Prompt Management
      • Prompt Playground
      • Span Replay
      • Prompts in Code
    • Quickstart: Prompts
      • Quickstart: Prompts (UI)
      • Quickstart: Prompts (Python)
      • Quickstart: Prompts (TS)
    • How to: Prompts
      • Configure AI Providers
      • Using the Playground
      • Create a prompt
      • Test a prompt
      • Tag a prompt
      • Using a prompt
    • Concepts: Prompts
  • 🗄️Datasets & Experiments
    • Overview: Datasets & Experiments
    • Quickstart: Datasets & Experiments
    • How-to: Datasets
      • Creating Datasets
      • Exporting Datasets
    • Concepts: Datasets
    • How-to: Experiments
      • Run Experiments
      • Using Evaluators
  • 🧠Evaluation
    • Overview: Evals
      • Agent Evaluation
    • Quickstart: Evals
    • How to: Evals
      • Pre-Built Evals
        • Hallucinations
        • Q&A on Retrieved Data
        • Retrieval (RAG) Relevance
        • Summarization
        • Code Generation
        • Toxicity
        • AI vs Human (Groundtruth)
        • Reference (citation) Link
        • User Frustration
        • SQL Generation Eval
        • Agent Function Calling Eval
        • Agent Path Convergence
        • Agent Planning
        • Agent Reflection
        • Audio Emotion Detection
      • Eval Models
      • Build an Eval
      • Build a Multimodal Eval
      • Online Evals
      • Evals API Reference
    • Concepts: Evals
      • LLM as a Judge
      • Eval Data Types
      • Evals With Explanations
      • Evaluators
      • Custom Task Evaluation
  • 🔍Retrieval
    • Overview: Retrieval
    • Quickstart: Retrieval
    • Concepts: Retrieval
      • Retrieval with Embeddings
      • Benchmarking Retrieval
      • Retrieval Evals on Document Chunks
  • 🌌inferences
    • Quickstart: Inferences
    • How-to: Inferences
      • Import Your Data
        • Prompt and Response (LLM)
        • Retrieval (RAG)
        • Corpus Data
      • Export Data
      • Generate Embeddings
      • Manage the App
      • Use Example Inferences
    • Concepts: Inferences
    • API: Inferences
    • Use-Cases: Inferences
      • Embeddings Analysis
  • 🔌INTEGRATIONS
    • Phoenix MCP Server
    • Cleanlab
    • Ragas
  • ⚙️Settings
    • Access Control (RBAC)
    • API Keys
    • Data Retention
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page
  • Launch Phoenix
  • Install
  • Setup
  • Observe

Was this helpful?

Edit on GitHub
  1. Tracing
  2. Integrations: Tracing

Google GenAI

Instrument LLM calls made using the Google Gen AI Python SDK

PreviousMistralAINextGroq

Last updated 21 hours ago

Was this helpful?

Launch Phoenix

Sign up for Phoenix:

Sign up for an Arize Phoenix account at

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint and API Key:

import os

# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

Your Phoenix API key can be found on the Keys section of your .

Launch your local Phoenix instance:

pip install arize-phoenix
phoenix serve

For details on customizing a local terminal deployment, see .

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"

See for more details.

docker pull arizephoenix/phoenix:latest

Run your containerized instance:

docker run -p 6006:6006 arizephoenix/phoenix:latest

This will expose the Phoenix on localhost:6006

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"

Install packages:

pip install arize-phoenix

Launch Phoenix:

import phoenix as px
px.launch_app()

Install

pip install openinference-instrumentation-google-genai google-genai

Setup

export GEMINI_API_KEY=[your_key_here]

Use the register function to connect your application to Phoenix.

from phoenix.otel import register

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
  auto_instrument=True # Auto-instrument your app based on installed OI dependencies
)

Observe

Now that you have tracing setup, all GenAI SDK requests will be streamed to Phoenix for observability and evaluation.

import os
from google import genai

def send_message_multi_turn() -> tuple[str, str]:
    client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])
    chat = client.chats.create(model="gemini-2.0-flash-001")
    response1 = chat.send_message("What is the capital of France?")
    response2 = chat.send_message("Why is the sky blue?")

    return response1.text or "", response2.text or ""

Pull latest Phoenix image from :

For more info on using Phoenix with Docker, see .

By default, notebook instances do not have persistent storage, so your traces will disappear after the notebook is closed. See or use one of the other deployment options to retain traces.

Set the GEMINI_API_KEY environment variable. To use the GenAI SDK with Vertex AI instead of the Developer API, refer to Google's on setting the required environment variables.

This instrumentation will support tool calling soon. Refer to for the status.

🔭
Docker Hub
Docker
self-hosting
guide
this page
https://app.phoenix.arize.com/login
dashboard
Terminal Setup
Terminal