LiteLLM allows developers to call all LLM APIs using the openAI format. LiteLLM Proxy is a proxy server to call 100+ LLMs in OpenAI format. Both are supported by this auto-instrumentation.
Any calls made to the following functions will be automatically captured by this integration:
import osfrom phoenix.otel import register# Add Phoenix API Key for tracingPHOENIX_API_KEY ="ADD YOUR API KEY"os.environ["PHOENIX_CLIENT_HEADERS"]=f"api_key={PHOENIX_API_KEY}"os.environ["PHOENIX_COLLECTOR_ENDPOINT"]="https://app.phoenix.arize.com"# configure the Phoenix tracertracer_provider =register( project_name="my-llm-app", # Default is 'default')
Your Phoenix API key can be found on the Keys section of your dashboard.
Launch your local Phoenix instance:
pipinstallarize-phoenixphoenixserve
For details on customizing a local terminal deployment, see Terminal Setup.
Install packages:
pipinstallarize-phoenix-otel
Connect your application to your instance using:
from phoenix.otel import registertracer_provider =register( project_name="my-llm-app", # Default is 'default' endpoint="http://localhost:6006/v1/traces",)
from phoenix.otel import registertracer_provider =register( project_name="my-llm-app", # Default is 'default' endpoint="http://localhost:6006/v1/traces",)
For more info on using Phoenix with Docker, see Docker
Install packages:
pipinstallarize-phoenix
Launch Phoenix:
import phoenix as pxpx.launch_app()
Connect your notebook to Phoenix:
from phoenix.otel import registertracer_provider =register( project_name="my-llm-app", # Default is 'default')
By default, notebook instances do not have persistent storage, so your traces will disappear after the notebook is closed. See Persistence or use one of the other deployment options to retain traces.
You can now use LiteLLM as normal and calls will be traces in Phoenix.
import litellmcompletion_response = litellm.completion(model="gpt-3.5-turbo", messages=[{"content": "What's the capital of China?", "role": "user"}])print(completion_response)