A Session is a sequence of traces representing a single session (e.g. a session or a thread). Each response is represented as its own trace, but these traces are linked together by being part of the same session.
To associate traces together, you need to pass in a special metadata key where the value is the unique identifier for that thread.
Example Notebooks
Use Case
Language
Links
OpenAI tracing with Sessions
Python
LlamaIndex tracing with Sessions
Python
OpenAI tracing with Sessions
TS/JS
Logging Conversations
Below is an example of logging conversations:
First make sure you have the required dependancies installed
pip install openinference-instrumentation
Below is an example of how to use openinference.instrumentation to the traces created.
import uuid
import openai
from openinference.instrumentation import using_session
from openinference.semconv.trace import SpanAttributes
from opentelemetry import trace
client = openai.Client()
session_id = str(uuid.uuid4())
tracer = trace.get_tracer(__name__)
@tracer.start_as_current_span(name="agent", attributes={SpanAttributes.OPENINFERENCE_SPAN_KIND: "agent"})
def assistant(
messages: list[dict],
session_id: str = str,
):
current_span = trace.get_current_span()
current_span.set_attribute(SpanAttributes.SESSION_ID, session_id)
current_span.set_attribute(SpanAttributes.INPUT_VALUE, messages[-1].get('content'))
# Propagate the session_id down to spans crated by the OpenAI instrumentation
# This is not strictly necessary, but it helps to correlate the spans to the same session
with using_session(session_id):
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "system", "content": "You are a helpful assistant."}] + messages,
).choices[0].message
current_span.set_attribute(SpanAttributes.OUTPUT_VALUE, response.content)
return response
messages = [
{"role": "user", "content": "hi! im bob"}
]
response = assistant(
messages,
session_id=session_id,
)
messages = messages + [
response,
{"role": "user", "content": "what's my name?"}
]
response = assistant(
messages,
session_id=session_id,
)
The easiest way to add sessions to your application is to install @arizeai/openinfernce-core
npm install @arizeai/openinference-core --save
You now can use either the session.id semantic attribute or the setSession utility function from openinference-core to associate traces with a particular session:
import { trace } from "@opentelemetry/api";
import { SemanticConventions } from "@arizeai/openinference-semantic-conventions";
import { context } from "@opentelemetry/api";
import { setSession } from "@arizeai/openinference-core";
const tracer = trace.getTracer("agent");
const client = new OpenAI({
apiKey: process.env["OPENAI_API_KEY"], // This is the default and can be omitted
});
async function assistant(params: {
messages: { role: string; content: string }[];
sessionId: string;
}) {
return tracer.startActiveSpan("agent", async (span: Span) => {
span.setAttribute(SemanticConventions.OPENINFERENCE_SPAN_KIND, "agent");
span.setAttribute(SemanticConventions.SESSION_ID, params.sessionId);
span.setAttribute(
SemanticConventions.INPUT_VALUE,
messages[messages.length - 1].content,
);
try {
// This is not strictly necessary but it helps propagate the session ID
// to all child spans
return context.with(
setSession(context.active(), { sessionId: params.sessionId }),
async () => {
// Calls within this block will generate spans with the session ID set
const chatCompletion = await client.chat.completions.create({
messages: params.messages,
model: "gpt-3.5-turbo",
});
const response = chatCompletion.choices[0].message;
span.setAttribute(SemanticConventions.OUTPUT_VALUE, response.content);
span.end();
return response;
},
);
} catch (e) {
span.error(e);
}
});
}
const sessionId = crypto.randomUUID();
let messages = [{ role: "user", content: "hi! im Tim" }];
const res = await assistant({
messages,
sessionId: sessionId,
});
messages = [res, { role: "assistant", content: "What is my name?" }];
await assistant({
messages,
sessionId: sessionId,
});
Viewing Sessions
You can view the sessions for a given project by clicking on the "Sessions" tab in the project. You will see a list of all the recent sessions as well as some analytics. You can search the content of the messages to narrow down the list.
You can then click into a given session. This will open the history of a particular session. If the sessions contain input / output, you will see a chatbot-like UI where you can see the a history of inputs and outputs.
How to track sessions with LangChain
For LangChain, in order to log runs as part of the same thread you need to pass a special metadata key to the run. The key value is the unique identifier for that conversation. The key name should be one of: