Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
  • Documentation
  • Self-Hosting
  • Cookbooks
  • Learn
  • Integrations
  • SDK and API Reference
  • Release Notes
  • Overview
  • LLM Providers
    • Amazon Bedrock
      • Amazon Bedrock Tracing
      • Amazon Bedrock Evals
      • Amazon Bedrock Agents Tracing
    • Anthropic
      • Anthropic Tracing
      • Anthropic Evals
    • Google Gen AI
      • Google GenAI Tracing
      • Gemini Evals
    • LiteLLM
      • LiteLLM Tracing
      • LiteLLM Evals
    • MistralAI
      • MistralAI Tracing
      • MistralAI Evals
    • Groq
      • Groq Tracing
    • OpenAI
      • OpenAI Tracing
      • OpenAI Evals
      • OpenAI Agents SDK Tracing
      • OpenAI Node.js SDK
    • VertexAI
      • VertexAI Tracing
      • VertexAI Evals
  • Frameworks
    • Agno
      • Agno Tracing
    • AutoGen
      • AutoGen Tracing
    • BeeAI
      • BeeAI Tracing (JS)
    • CrewAI
      • CrewAI Tracing
    • DSPy
      • DSPy Tracing
    • Flowise
      • Flowise Tracing
    • Guardrails AI
      • Guardrails AI Tracing
    • Haystack
      • Haystack Tracing
    • Hugging Face smolagents
      • smolagents Tracing
    • Instructor
      • Instructor Tracing
    • LlamaIndex
      • LlamaIndex Tracing
      • LlamaIndex Workflows Tracing
    • LangChain
      • LangChain Tracing
      • LangChain.js
    • LangGraph
      • LangGraph Tracing
  • LangFlow
    • LangFlow Tracing
  • Mastra
    • Mastra Tracing
  • Model Context Protocol
    • Phoenix MCP Server
    • MCP Tracing
  • Portkey
    • Portkey Tracing
  • Prompt Flow
    • Prompt Flow Tracing
  • Pydantic AI
    • Pydantic AI Tracing
    • Pydantic AI Evals
  • Vercel
    • Vercel AI SDK Tracing (JS)
  • Evaluation Libraries
    • Cleanlab
    • Ragas
  • Vector Databases
    • MongoDB
    • Pinecone
    • Qdrant
    • Weaviate
    • Zilliz / Milvus
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page
  • Launch Phoenix
  • Install
  • Setup
  • Run Portkey
  • Basic Usage with OpenAI
  • Using Portkey SDK Directly
  • Observe
  • Resources

Was this helpful?

Edit on GitHub
  1. Portkey

Portkey Tracing

How to trace Portkey AI Gateway requests with Phoenix for comprehensive LLM observability

PreviousPortkeyNextPrompt Flow

Last updated 1 day ago

Was this helpful?

Phoenix provides seamless integration with , the AI Gateway and observability platform that routes to 200+ LLMs with enterprise-grade features including guardrails, caching, and load balancing.

Launch Phoenix

Sign up for Phoenix:

Sign up for an Arize Phoenix account at

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint and API Key:

import os

# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

Your Phoenix API key can be found on the Keys section of your .

Launch your local Phoenix instance:

pip install arize-phoenix
phoenix serve

For details on customizing a local terminal deployment, see .

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"

See Terminal for more details

docker pull arizephoenix/phoenix:latest

Run your containerized instance:

docker run -p 6006:6006 arizephoenix/phoenix:latest

This will expose the Phoenix on localhost:6006

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"

Install packages:

pip install arize-phoenix

Launch Phoenix:

import phoenix as px
px.launch_app()

Install

pip install openinference-instrumentation-portkey portkey-ai

Setup

Use the register function to connect your application to Phoenix:

from phoenix.otel import register

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-portkey-app", # Default is 'default'
  auto_instrument=True # Auto-instrument your app based on installed OI dependencies
)

Run Portkey

By instrumenting Portkey, spans will be created whenever requests are made through the AI Gateway and will be sent to the Phoenix server for collection.

Basic Usage with OpenAI

import os
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders

# Set up your API keys
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
os.environ["PORTKEY_API_KEY"] = "your-portkey-api-key"  # Optional for self-hosted

client = OpenAI(
    api_key=os.environ.get("OPENAI_API_KEY"),
    base_url=PORTKEY_GATEWAY_URL,
    default_headers=createHeaders(
        provider="openai",
        api_key=os.environ.get("PORTKEY_API_KEY")
    )
)

response = client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[{"role": "user", "content": "What is artificial intelligence?"}]
)

print(response.choices[0].message.content)

Using Portkey SDK Directly

from portkey_ai import Portkey

# Initialize Portkey client
portkey = Portkey(
    api_key="your-portkey-api-key",  # Optional for self-hosted
    virtual_key="your-openai-virtual-key"  # Or use provider-specific virtual keys
)

response = portkey.chat.completions.create(
    model="gpt-4o-mini",
    messages=[{"role": "user", "content": "Explain machine learning"}]
)

print(response.choices[0].message.content)

Observe

Now that you have tracing setup, all requests through Portkey's AI Gateway will be streamed to your running Phoenix instance for observability and evaluation. You'll be able to see:

  • Request/Response Traces: Complete visibility into LLM interactions

  • Routing Decisions: Which provider was selected and why

  • Fallback Events: When and why fallbacks were triggered

  • Cache Performance: Hit/miss rates and response times

  • Cost Tracking: Token usage and costs across providers

  • Latency Metrics: Response times for each provider and route

Resources

Pull latest Phoenix image from :

For more info on using Phoenix with Docker, see .

By default, notebook instances do not have persistent storage, so your traces will disappear after the notebook is closed. See or use one of the other deployment options to retain traces.

Portkey
https://app.phoenix.arize.com/login
dashboard
Terminal Setup
Docker Hub
Docker
self-hosting
Phoenix OpenInference Instrumentation