Phoenix
TypeScript APIPython APICommunityGitHubPhoenix Cloud
  • Documentation
  • Self-Hosting
  • Cookbooks
  • Learn
  • Integrations
  • SDK and API Reference
  • Release Notes
  • Overview
  • LLM Providers
    • Amazon Bedrock
      • Amazon Bedrock Tracing
      • Amazon Bedrock Evals
      • Amazon Bedrock Agents Tracing
    • Anthropic
      • Anthropic Tracing
      • Anthropic Evals
    • Google Gen AI
      • Google GenAI Tracing
      • Gemini Evals
    • LiteLLM
      • LiteLLM Tracing
      • LiteLLM Evals
    • MistralAI
      • MistralAI Tracing
      • MistralAI Evals
    • Groq
      • Groq Tracing
    • OpenAI
      • OpenAI Tracing
      • OpenAI Evals
      • OpenAI Agents SDK Tracing
      • OpenAI Node.js SDK
    • VertexAI
      • VertexAI Tracing
      • VertexAI Evals
  • Frameworks
    • Agno
      • Agno Tracing
    • AutoGen
      • AutoGen Tracing
    • BeeAI
      • BeeAI Tracing (JS)
    • CrewAI
      • CrewAI Tracing
    • DSPy
      • DSPy Tracing
    • Flowise
      • Flowise Tracing
    • Guardrails AI
      • Guardrails AI Tracing
    • Haystack
      • Haystack Tracing
    • Hugging Face smolagents
      • smolagents Tracing
    • Instructor
      • Instructor Tracing
    • LlamaIndex
      • LlamaIndex Tracing
      • LlamaIndex Workflows Tracing
    • LangChain
      • LangChain Tracing
      • LangChain.js
    • LangGraph
      • LangGraph Tracing
  • LangFlow
    • LangFlow Tracing
  • Model Context Protocol
    • Phoenix MCP Server
    • MCP Tracing
  • Prompt Flow
    • Prompt Flow Tracing
  • Vercel
    • Vercel AI SDK Tracing (JS)
  • Evaluation Libraries
    • Cleanlab
    • Ragas
  • Vector Databases
    • MongoDB
    • Pinecone
    • Qdrant
    • Weaviate
    • Zilliz / Milvus
Powered by GitBook

Platform

  • Tracing
  • Prompts
  • Datasets and Experiments
  • Evals

Software

  • Python Client
  • TypeScript Client
  • Phoenix Evals
  • Phoenix Otel

Resources

  • Container Images
  • X
  • Blue Sky
  • Blog

Integrations

  • OpenTelemetry
  • AI Providers

© 2025 Arize AI

On this page
  • Launch Phoenix
  • Install
  • Setup
  • Run VertexAI
  • Observe
  • Resources

Was this helpful?

  1. LLM Providers
  2. VertexAI

VertexAI Tracing

Instrument LLM calls made using VertexAI's SDK via the VertexAIInstrumentor

PreviousVertexAINextVertexAI Evals

Last updated 6 days ago

Was this helpful?

The VertexAI SDK can be instrumented using the package.

Launch Phoenix

Install

pip install openinference-instrumentation-vertexai vertexai

Setup

See Google's on setting up your environment for the Google Cloud AI Platform. You can also store your Project ID in the CLOUD_ML_PROJECT_ID environment variable.

Use the register function to connect your application to Phoenix:

from phoenix.otel import register

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
  auto_instrument=True # Auto-instrument your app based on installed OI dependencies
)

Run VertexAI

import vertexai
from vertexai.generative_models import GenerativeModel

vertexai.init(location="us-central1")
model = GenerativeModel("gemini-1.5-flash")

print(model.generate_content("Why is sky blue?").text)

Observe

Now that you have tracing setup, all invocations of Vertex models will be streamed to your running Phoenix for observability and evaluation.

Resources

Example notebook
OpenInference package
Working examples
openinference-instrumentation-vertexai
guide

Sign up for Phoenix:

Sign up for an Arize Phoenix account at

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint and API Key:

import os

# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

Your Phoenix API key can be found on the Keys section of your .

Launch your local Phoenix instance:

pip install arize-phoenix
phoenix serve

For details on customizing a local terminal deployment, see .

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"

See for more details.

docker pull arizephoenix/phoenix:latest

Run your containerized instance:

docker run -p 6006:6006 arizephoenix/phoenix:latest

This will expose the Phoenix on localhost:6006

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint:

import os

os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"

Install packages:

pip install arize-phoenix

Launch Phoenix:

import phoenix as px
px.launch_app()

Pull latest Phoenix image from :

For more info on using Phoenix with Docker, see .

By default, notebook instances do not have persistent storage, so your traces will disappear after the notebook is closed. See or use one of the other deployment options to retain traces.

https://app.phoenix.arize.com/login
dashboard
Terminal Setup
Terminal
Docker Hub
Docker
self-hosting