Prompts that are pushed to Phoenix are versioned and can be tagged.
Pulling a Prompt from Phoenix
The getPrompt function can be used to pull a prompt from Phoenix based on some Prompt Identifier and returns it in the Phoenix SDK Prompt type.
import { getPrompt } from "@arizeai/phoenix-client/prompts";
const prompt = await getPrompt({ name: "my-prompt" });
// ^ you now have a strongly-typed prompt object, in the Phoenix SDK Prompt type
const promptByTag = await getPrompt({ tag: "production", name: "my-prompt" });
// ^ you can optionally specify a tag to filter by
const promptByVersionId = await getPrompt({
versionId: "1234567890",
});
// ^ you can optionally specify a prompt version Id to filter by
Using a Phoenix Prompt with an LLM Provider SDK
The toSDK helper function can be used to convert a Phoenix Prompt to the format expected by an LLM provider SDK. You can then use the LLM provider SDK as normal, with your prompt.
If your Prompt is saved in Phoenix as openai, you can use the toSDK function to convert the prompt to the format expected by OpenAI, or even Anthropic and Vercel AI SDK. We will do a best
effort conversion to your LLM provider SDK of choice.
The following LLM provider SDKs are supported:
import { generateText } from "ai";
import { openai } from "@ai-sdk/openai";
import { getPrompt, toSDK } from "@arizeai/phoenix-client/prompts";
const prompt = await getPrompt({ name: "my-prompt" });
const promptAsAI = toSDK({
sdk: "ai",
// ^ the SDK you want to convert the prompt to, supported SDKs are listed above
variables: {
"my-variable": "my-value",
},
// ^ you can format the prompt with variables, if the prompt has any variables in its template
// the format (Mustache, F-string, etc.) is specified in the Prompt itself
prompt,
});
// ^ promptAsAI is now in the format expected by the Vercel AI SDK generateText function
const response = await generateText({
model: openai(prompt.model_name),
// ^ the model adapter provided by the Vercel AI SDK can be swapped out for any other model
// adapter supported by the Vercel AI SDK. Take care to use the correct model name for the
// LLM provider you are using.
...promptAsAI,
});
REST Endpoints
Endpoints are accessible via strongly-typed string literals and TypeScript auto-completion inside of the client object.
import { createClient } from "@arizeai/phoenix-client";
const phoenix = createClient();
// Get all datasets
const datasets = await phoenix.GET("/v1/datasets");
// Get specific prompt
const prompt = await phoenix.GET("/v1/prompts/{prompt_identifier}/latest", {
params: {
path: {
prompt_identifier: "my-prompt",
},
},
});
Examples
To run examples, install dependencies using pnpm and run:
pnpm install
pnpx tsx examples/list_datasets.ts
# change the file name to run other examples
Compatibility
Because of this, this package only works with the arize-phonix server 8.0.0 and above.
Compatibility Table:
Phoenix Client Version
Phoenix Server Version
^1.0.0
^8.0.0
Vercel AI SDK: ai
OpenAI: openai
Anthropic: anthropic
The client provides a REST API for all endpoints defined in the .
A comprehensive overview of the available endpoints and their parameters is available in the OpenAPI viewer within Phoenix, or in the .
This package utilizes to generate the types from the Phoenix OpenAPI spec.